拋物線y=x2+bx+c在點(diǎn)(1,2)處的切線與其平行直線bx+y+c=0間的距離是
![]()
![]()
![]()
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:成功之路·突破重點(diǎn)線·數(shù)學(xué)(學(xué)生用書(shū)) 題型:044
(1)已知f(x)為二次函數(shù),且f(2x+1)+f(2x-1)=16x2-4x+6,求f(x).
(2)已知函數(shù)f(x)=x2+bx+c,對(duì)任意實(shí)數(shù)t都有f(2+t)=f(2-t),試比較f(1),f(2),f(4)的大。
(3)設(shè)f(x)為定義在實(shí)數(shù)集R上的偶函數(shù),當(dāng)x≤-1時(shí),y=f(x)的圖象經(jīng)過(guò)點(diǎn)(-2,0),斜率為1的射線,又在y=f(x)的圖象中有一部分是頂點(diǎn)在(0,2),且經(jīng)過(guò)點(diǎn)(-1,1)的一段拋物線.試求函數(shù)f(x)的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:成功之路·突破重點(diǎn)線·數(shù)學(xué)(學(xué)生用書(shū)) 題型:044
確定拋物線方程y=x2+bx+c中常數(shù)b和c,使得拋物線和直線y=2x在x=2相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:設(shè)計(jì)必修一數(shù)學(xué)北師版 北師版 題型:044
已知拋物線y=ax2+bx+c(a≠0)與x軸有兩個(gè)不同的交點(diǎn)A(x1,0)、B(x2,0),且x12+x22=
,試問(wèn)該拋物線由y=-3(x-1)2的圖像向上平移幾個(gè)單位得到?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年甘肅甘谷一中宏志班選拔考試數(shù)學(xué)試卷(解析版) 題型:解答題
若x1、x2是關(guān)于一元二次方程ax2+bx+c(a≠0)的兩個(gè)根,則方程的兩個(gè)根x1、x2和系數(shù)a、b、c有如下關(guān)系:x1+x2=-
,x1•x2=
.把它稱為一元二次方程根與系數(shù)關(guān)系定理.如果設(shè)二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的兩個(gè)交點(diǎn)為A(x1,0),B(x2,0).利用根與系數(shù)關(guān)系定理可以得到A、B連個(gè)交點(diǎn)間的距離為:
AB=|x1-x2|=
=
=
=
.
![]()
參考以上定理和結(jié)論,解答下列問(wèn)題:
設(shè)二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸的兩個(gè)交點(diǎn)A(x1,0)、B(x2,0),拋物線的頂點(diǎn)為C,顯然△ABC為等腰三角形.
(1)當(dāng)△ABC為直角三角形時(shí),求b2-4ac的值;
(2)當(dāng)△ABC為等邊三角形時(shí),求b2-4ac的值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com