【題目】已知
,拋物線
:
與拋物線
:
異于原點
的交點為
,且拋物線
在點
處的切線與
軸交于點
,拋物線
在點
處的切線與
軸交于點
,與
軸交于點
.
(1)若直線
與拋物線
交于點
,
,且
,求拋物線
的方程;
(2)證明:
的面積與四邊形
的面積之比為定值.
【答案】(1)
(2)見解析
【解析】試題分析:(1)聯(lián)立直線方程與拋物線方程,根據(jù)弦長公式以及韋達(dá)定理得等量關(guān)系,求出p,(2)先求M坐標(biāo),再求直線
方程,進(jìn)而求得A,B,C坐標(biāo),即得面積,最后作商.
試題解析:(1)解:由
,消去
得
.
設(shè)
,
的坐標(biāo)分別為
,
,
則
,
.
∴
,∵
,∴
.
故拋物線
的方程為
.
(2)證明:由
,得
或
,則
.
設(shè)直線
:
,與
聯(lián)立得
.
由
,得
,∴
.
設(shè)直線
:
,與
聯(lián)立得
.
由
,得
,∴
.
故直線
:
,直線
:
,
從而不難求得
,
,
,
∴
,
,∴
的面積與四邊形
的面積之比為
(為定值).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校100名學(xué)生期中考試語文成績的頻率分布直方圖如圖4所示,其中成績分組區(qū)間是:
,
,
,
,
.
![]()
(1)求圖中
的值;
(2)根據(jù)頻率分布直方圖,估計這100名學(xué)生語文成績的平均分;
(3)若這100名學(xué)生語文成績某些分?jǐn)?shù)段的人數(shù)
與數(shù)學(xué)成績相應(yīng)分?jǐn)?shù)段的人數(shù)
之比如下表所示,求數(shù)學(xué)成績在
之外的人數(shù).
分?jǐn)?shù)段 |
|
|
|
|
X:y | 1:1 | 2:1 | 3:4 | 4:5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】海中一小島
的周圍
內(nèi)有暗礁,海輪由西向東航行至
處測得小島
位于北偏東
,航行8
后,于
處測得小島
在北偏東
(如圖所示).
![]()
(1)如果這艘海輪不改變航向,有沒有觸礁的危險?請說明理由.
(2)如果有觸礁的危險,這艘海輪在
處改變航向為東偏南
(
)方向航行,求
的最小值.
附: ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
.
(1)若函數(shù)f(x)的圖像中相鄰兩條對稱軸間的距離不小于
,求
的取值范圍;
(2)若函數(shù)f(x)的最小正周期為π,且當(dāng)x∈
時,f(x)的最大值是
,求函數(shù)f(x)的最小值,并說明如何由函數(shù)y=sin2x的圖象變換得到函數(shù)y=f(x)的圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
圖象上相鄰的兩個最值點為
,
.
(1)求
的解析式;
(2)求函數(shù)
的單調(diào)遞增區(qū)間;
(3)求函數(shù)
在區(qū)間
上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大型超市在2018年元旦舉辦了一次抽獎活動,抽獎箱里放有2個紅球,1個黃球和1個藍(lán)球(這些小球除顏色外大小形狀完全相同),從中隨機一次性取2個小球,每位顧客每次抽完獎后將球放回抽獎箱.活動另附說明如下:
①凡購物滿100(含100)元者,憑購物打印憑條可獲得一次抽獎機會;
②凡購物滿188(含188)元者,憑購物打印憑條可獲得兩次抽獎機會;
③若取得的2個小球都是紅球,則該顧客中得一等獎,獎金是一個10元的紅包;
④若取得的2個小球都不是紅球,則該顧客中得二等獎,獎金是一個5元的紅包;
⑤若取得的2個小球只有1個紅球,則該顧客中得三等獎,獎金是一個2元的紅包.
抽獎活動的組織者記錄了該超市前20位顧客的購物消費數(shù)據(jù)(單位:元),繪制得到如圖所示的莖葉圖.
![]()
(1)求這20位顧客中獲得抽獎機會的人數(shù)與抽獎總次數(shù)(假定每位獲得抽獎機會的顧客都會去抽獎);
(2)求這20位顧客中獎得抽獎機會的顧客的購物消費數(shù)據(jù)的中位數(shù)與平均數(shù)(結(jié)果精確到整數(shù)部分);
(3)分別求在一次抽獎中獲得紅包獎金10元,5元,2元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)求函數(shù)
的極值;
(2)當(dāng)
時,若直線
:
與曲線
沒有公共點,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
分別是橢圓
的左、右焦點.
(1)若
是該橢圓上的一個動點,求
的最大值和最小值;
(2)設(shè)過定點
的直線
與橢圓交于不同的兩點
,且
為銳角(其中
為坐標(biāo)原點),求直線
的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形
中,
,
為邊
的中點,將
沿直線
翻轉(zhuǎn)成
.若
為線段
的中點,則在
翻折過程中:
![]()
①
是定值;②點
在某個球面上運動;
③存在某個位置,使
;④存在某個位置,使
平面
.
其中正確的命題是_________.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com