【題目】已知函數(shù)
,關(guān)于函數(shù)
的性質(zhì),有以下四個(gè)推斷:
①
的定義域是
;
②
的值域是
;
③
是奇函數(shù);
④
是區(qū)間(0,2)內(nèi)的增函數(shù).
其中推斷正確的個(gè)數(shù)是( )
A. 1B. 2C. 3D. 4
【答案】C
【解析】
根據(jù)f(x)的表達(dá)式求出其定義域,判斷①正確;根據(jù)基本不等式的性質(zhì)求出f(x)的值域,判斷②正確;根據(jù)奇偶性的定義,判斷③正確;根據(jù)函數(shù)的單調(diào)性,判斷④錯(cuò)誤.
①∵函數(shù)
,
∴f(x)的定義域是(﹣∞,+∞),
故①正確;
②f(x)=
,
x>0時(shí):f(x)≤
,
x<0時(shí):f(x)≥﹣
,
故f(x)的值域是
,
故②正確;
③f(﹣x)=﹣f(x),f(x)是奇函數(shù),
故③正確;
④由f′(x)=
,
令f′(x)>0,解得:﹣1<x<1,
令f′(x)<0,解得:x>1或x<﹣1,
∴f(x)在區(qū)間(0,2)上先增后減,
故④錯(cuò)誤;
故答案為:①②③.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了研究黏蟲孵化的平均溫度
(單位:
)與孵化天數(shù)
之間的關(guān)系,某課外興趣小組通過(guò)試驗(yàn)得到如下6組數(shù)據(jù):
組號(hào) | 1 | 2 | 3 | 4 | 5 | 6 |
平均溫度 | 15.3 | 16.8 | 17.4 | 18 | 19.5 | 21 |
孵化天數(shù) | 16.7 | 14.8 | 13.9 | 13.5 | 8.4 | 6.2 |
他們分別用兩種模型①
,②
分別進(jìn)行擬合,得到相應(yīng)的回歸方程并進(jìn)行殘差分析,得到如圖所示的殘差圖:
![]()
經(jīng)計(jì)算得
,
(1)根據(jù)殘差圖,比較模型①,②的擬合效果,應(yīng)選擇哪個(gè)模型?(給出判斷即可,不必說(shuō)明理由)
(2)殘差絕對(duì)值大于1的數(shù)據(jù)被認(rèn)為是異常數(shù)據(jù),需要剔除,剔除后應(yīng)用最小二乘法建立
關(guān)于
的線性回歸方程.(精確到0.1)
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱臺(tái)
中,
底面
,平面
平面
為
的中點(diǎn).
(1)證明:
;
(2)若
,且
,求點(diǎn)
到平面
的距離.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)若
,求曲線
在點(diǎn)
處的切線方程;
(Ⅱ)若
,求函數(shù)
的單調(diào)區(qū)間;
(Ⅲ)若
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)工會(huì)利用 “健步行
”開展健步走積分獎(jiǎng)勵(lì)活動(dòng).會(huì)員每天走5千步可獲積分30分(不足5千步不積分),每多走2千步再積20分(不足2千步不積分).記年齡不超過(guò)40歲的會(huì)員為
類會(huì)員,年齡大于40歲的會(huì)員為
類會(huì)員.為了解會(huì)員的健步走情況,工會(huì)從
兩類會(huì)員中各隨機(jī)抽取
名會(huì)員,統(tǒng)計(jì)了某天他們健步走的步數(shù),并將樣本數(shù)據(jù)分為
,
,
,
,
,
,
,
,
九組,將抽取的
類會(huì)員的樣本數(shù)據(jù)繪制成頻率分布直方圖,
類會(huì)員的樣本數(shù)據(jù)繪制成頻率分布表(圖、表如下所示).
![]()
(Ⅰ)求
和
的值;
(Ⅱ)從該地區(qū)
類會(huì)員中隨機(jī)抽取
名,設(shè)這
名會(huì)員中健步走的步數(shù)在
千步以上(含
千步)的人數(shù)為
,求
的分布列和數(shù)學(xué)期望;
(Ⅲ)設(shè)該地區(qū)
類會(huì)員和
類會(huì)員的平均積分分別為
和
,試比較
和
的大。ㄖ恍鑼懗鼋Y(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】濟(jì)南新舊動(dòng)能轉(zhuǎn)換先行區(qū),承載著濟(jì)南從“大明湖時(shí)代”邁向“黃河時(shí)代”的夢(mèng)想,肩負(fù)著山東省新舊動(dòng)能轉(zhuǎn)換先行先試的重任,是全國(guó)新舊動(dòng)能轉(zhuǎn)換的先行區(qū).先行區(qū)將以“結(jié)構(gòu)優(yōu)化質(zhì)量提升”為目標(biāo),通過(guò)開放平臺(tái)匯聚創(chuàng)新要素,堅(jiān)持綠色循環(huán)保障持續(xù)發(fā)展,建設(shè)現(xiàn)代綠色智慧新城.2019年某智能機(jī)器人制造企業(yè)有意落戶先行區(qū),對(duì)市場(chǎng)進(jìn)行了可行性分析,如果全年固定成本共需2000(萬(wàn)元),每年生產(chǎn)機(jī)器人
(百個(gè)),需另投人成本
(萬(wàn)元),且
,由市場(chǎng)調(diào)研知,每個(gè)機(jī)器人售價(jià)6萬(wàn)元,且全年生產(chǎn)的機(jī)器人當(dāng)年能全部銷售完.
(1)求年利潤(rùn)
(萬(wàn)元)關(guān)于年產(chǎn)量
(百個(gè))的函數(shù)關(guān)系式;(利潤(rùn)=銷售額-成本)
(2)該企業(yè)決定:當(dāng)企業(yè)年最大利潤(rùn)超過(guò)2000(萬(wàn)元)時(shí),才選擇落戶新舊動(dòng)能轉(zhuǎn)換先行區(qū).請(qǐng)問(wèn)該企業(yè)能否落戶先行區(qū),并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,位于A處的信息中心獲悉:在其正東方向相距40海里的B處有一艘漁船遇險(xiǎn),在原地等待營(yíng)救.信息中心立即把消息告知在其南偏西30°,相距20海里的C處的乙船,現(xiàn)乙船朝北偏東
的方向即沿直線CB前往B處救援,則
等于 ( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)
,函數(shù)
,函數(shù)
.
(1)討論
的單調(diào)性;
(2)當(dāng)
時(shí),不等式
恒成立,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知無(wú)窮數(shù)列
的前n項(xiàng)和為
,記
,
,…,
中奇數(shù)的個(gè)數(shù)為
.
(Ⅰ)若
= n,請(qǐng)寫出數(shù)列
的前5項(xiàng);
(Ⅱ)求證:"
為奇數(shù),
(i = 2,3,4,...)為偶數(shù)”是“數(shù)列
是單調(diào)遞增數(shù)列”的充分不必要條件;
(Ⅲ)若
,i=1, 2, 3,…,求數(shù)列
的通項(xiàng)公式.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com