【題目】已知直線l經(jīng)過(guò)直線2x+y-5=0與x-2y=0的交點(diǎn)P.
(1)若直線l平行于直線l1:4x-y+1=0,求l的方程;
(2)若直線l垂直于直線l1:4x-y+1=0,求l的方程.
【答案】(1):4x-y-7=0;(2)x+4y-6=0
【解析】
聯(lián)立兩條已知直線的方程,求得交點(diǎn)
的坐標(biāo),(1)根據(jù)平行設(shè)出直線方程,將
點(diǎn)坐標(biāo)代入求得參數(shù)的值,由此求得
的方程.(2)根據(jù)垂直設(shè)出直線方程,將
點(diǎn)坐標(biāo)代入求得參數(shù)的值,由此求得
的方程.
聯(lián)立
,解得P(2,1).
(1)設(shè)直線l:4x-y+m=0,把(2,1)代入可得:4×2-1+m=0,m=-7.∴l的方程為:4x-y-7=0;
(2)設(shè)直線l的方程為:x+4y+n=0,把點(diǎn)P(2,1)代入上述方程可得:2+4+n=0,解得n=-6.
∴x+4y-6=0.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知平面直角坐標(biāo)
中,曲線
的參數(shù)方程為
(
為參數(shù)),直線
的參數(shù)方程為
(
,
參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸,建立極坐標(biāo)系.
(1)若
,求直線
以及曲線
的極坐標(biāo)方程;
(2)已知
,
,
,
均在曲線
上,且四邊形
為矩形為矩形,求其周長(zhǎng)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)
為拋物線
的準(zhǔn)線上一點(diǎn),F為C 的焦點(diǎn),點(diǎn)P在C上且滿足
,若當(dāng)m取得最小值時(shí),點(diǎn)P恰好在以原點(diǎn)為中心,F為焦點(diǎn)的雙曲線上,則該雙曲線的離心率為
A.
B. 3 C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有下列五個(gè)命題: ①函數(shù)y=4cos2x,x∈[﹣10π,10π]不是周期函數(shù);
②已知定義域?yàn)镽的奇函數(shù)f(x),滿足f(x+3)=f(x),當(dāng)x∈(0,
)時(shí),f(x)=sinπx,則函數(shù)f(x)在區(qū)間[0,6]上的零點(diǎn)個(gè)數(shù)是9;
③為了得到函數(shù)y=﹣cos2x的圖象,可以將函數(shù)y=sin(2x﹣
)的圖象向左平移
;
④已知函數(shù)f(x)=x﹣sinx,若x1 , x2∈[﹣
,
]且f(x1)+f(x2)>0,則x1+x2>0;
⑤設(shè)曲線f(x)=acosx+bsinx的一條對(duì)稱軸為x=
,則點(diǎn)(
,0)為曲線y=f(
﹣x)的一個(gè)對(duì)稱中心.
其中正確命題的序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在
對(duì)應(yīng)的邊分別為
,且
,
(I)求角A,
(II)求證:![]()
(III)若
,且BC邊上的中線AM長(zhǎng)為
,求
的面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直角梯形
所在的平面垂直于平面
,
,
,
.
![]()
(1)若
是
的中點(diǎn),求證:
平面
;
(2)求平面
與平面
所成的銳二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=
x3+2x2+3x(x∈R)的圖象為曲線C,問(wèn):是否存在一條直線與曲線C同時(shí)切于兩點(diǎn)?若存在,求出符合條件的所在直線方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某城市小區(qū)有一個(gè)矩形休閑廣場(chǎng),AB=20米,廣場(chǎng)的一角是半徑為16米的扇形BCE綠化區(qū)域,為了使小區(qū)居民能夠更好的在廣場(chǎng)休閑放松,現(xiàn)決定在廣場(chǎng)上安置兩排休閑椅,其中一排是穿越廣場(chǎng)的雙人靠背直排椅MN(寬度不計(jì)),點(diǎn)M在線段AD上,并且與曲線CE相切;另一排為單人弧形椅沿曲線CN(寬度不計(jì))擺放.已知雙人靠背直排椅的造價(jià)每米為2a元,單人弧形椅的造價(jià)每米為a元,記銳角∠NBE=θ,總造價(jià)為W元. ![]()
(1)試將W表示為θ的函數(shù)W(θ),并寫(xiě)出cosθ的取值范圍;
(2)如何選取點(diǎn)M的位置,能使總造價(jià)W最。
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com