【題目】下列命題中,是假命題的是( )
A.?x0∈R,sinx0+cosx0= ![]()
B.?x0∈R,tanx0=2016
C.?x>0,x>lnx
D.?x∈R,2x>0
【答案】A
【解析】解:sinx+cosx=
sin(x+
)∈[﹣
,
],
[﹣
,
],
故x0∈R,sinx0+cosx0=
是假命題;
tanx∈R,故x0∈R,tanx0=2016是真命題;
令f(x)=x﹣lnx,則f′(x)=1﹣
,當(dāng)x∈(0,1)時,f′(x)<0,函數(shù)為減函數(shù),當(dāng)x∈(1,+∞)時,f′(x)>0,函數(shù)為增函數(shù),
故當(dāng)x=1時,f(x)取最小值1,故f(x)=x﹣lnx≥1恒成立,
故x>0,x>lnx是真命題;
指數(shù)函數(shù)的值域?yàn)椋?,+∞),
x∈R,2x>0是真命題;
故選:A.
【考點(diǎn)精析】通過靈活運(yùn)用命題的真假判斷與應(yīng)用,掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系即可以解答此題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】敘利亞內(nèi)戰(zhàn)接近尾聲,中國紅十字會相應(yīng)國際號召,支持?jǐn)⒗麃喨嗣駪?zhàn)后重建,為解決現(xiàn)階段敘利亞人民急需的醫(yī)療保障,現(xiàn)擬從北京某知名醫(yī)院的專職教授的醫(yī)生6人(其中男醫(yī)生3人,女醫(yī)生3人),護(hù)士8人(其中男護(hù)士2人,女護(hù)士6人)中選派醫(yī)生、護(hù)士各三人組成衛(wèi)生醫(yī)療對,要求男醫(yī)生至少兩人,男護(hù)士至少一人,則這樣的選派方案共有__________種.(請用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=ax2+bx+1.
(1)若f(x)>0的解集是(﹣1,2),求實(shí)數(shù)a,b的值.
(2)求z=3a﹣b的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正三棱柱ABC﹣A1B1C1中,已知D,E分別為BC,B1C1的中點(diǎn),點(diǎn)F在棱CC1上,且EF⊥C1D.求證: ![]()
(1)直線A1E∥平面ADC1;
(2)直線EF⊥平面ADC1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】奇函數(shù)f(x)定義域是(﹣1,0)∪(0,1),f(
)=0,當(dāng)x>0時,總有(
x)f′(x)ln(1﹣x2)>2f(x)成立,則不等式f(x)>0的解集為( )
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
,
,
表示三條不同的直線,
,
,
表示三個不同的平面,給出下列四個命題:
①若
,則
;
②若
,
是
在
內(nèi)的射影,
,則
;
③若
是平面
的一條斜線,點(diǎn)
,
為過點(diǎn)
的一條動直線,則可能有
且
;
④若
,則
.
其中正確的序號是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD,N為PC的中點(diǎn).
![]()
(Ⅰ)證明MN∥平面PAB;
(Ⅱ)求直線AN與平面PMN所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)F1(﹣1,0),F(xiàn)2(1,0),動點(diǎn)M到點(diǎn)F2的距離是
,線段MF1的中垂線交線段MF2于點(diǎn)P. (Ⅰ)當(dāng)點(diǎn)M變化時,求動點(diǎn)P的軌跡G的方程;
(Ⅱ)過點(diǎn)F2且不與x軸重合的直線L與曲線G相交于A,B兩點(diǎn),過點(diǎn)B作x軸的平行線與直線x=2相交于點(diǎn)C,則直線AC是否恒過定點(diǎn),若是請求出該定點(diǎn),若不是請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an},an=(2n+m)+(﹣1)n(3n﹣2)(m∈N* , m與n無關(guān)),若
a2i﹣1≤k2﹣2k﹣1對一切m∈N*恒成立,則實(shí)數(shù)k的取值范圍為 .
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com