| A. | -3 | B. | 1 | C. | $\frac{4}{3}$ | D. | 3 |
分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,求出三角形各頂點(diǎn)的坐標(biāo),利用三角形的面積公式進(jìn)行求解即可.
解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
若表示的平面區(qū)域?yàn)槿切危?br />由$\left\{\begin{array}{l}{x+y-2=0}\\{x+2y-2=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=2}\\{y=0}\end{array}\right.$,即A(2,0),
則A(2,0)在直線x-y+2m=0的下方,
即2+2m>0,
則m>-1,
則A(2,0),
D(-2m,0),
由$\left\{\begin{array}{l}{x-y+2m=0}\\{x+y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1-m}\\{y=1+m}\end{array}\right.$,即B(1-m,1+m),
由$\left\{\begin{array}{l}{x-y+2m=0}\\{x+2y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{2-4m}{3}}\\{y=\frac{2+2m}{3}}\end{array}\right.$,即C($\frac{2-4m}{3}$,$\frac{2+2m}{3}$).
則三角形ABC的面積S△ABC=S△ADB-S△ADC
=$\frac{1}{2}$|AD||yB-yC|
=$\frac{1}{2}$(2+2m)(1+m-$\frac{2+2m}{3}$)
=(1+m)(1+m-$\frac{2+2m}{3}$)=$\frac{4}{3}$,
即(1+m)×$\frac{1+m}{3}$=$\frac{4}{3}$,
即(1+m)2=4
解得m=1或m=-3(舍),
故選:B
點(diǎn)評(píng) 本題主要考查線性規(guī)劃以及三角形面積的計(jì)算,求出交點(diǎn)坐標(biāo),結(jié)合三角形的面積公式是解決本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{3}+2π$ | B. | $\frac{13π}{6}$ | C. | $\frac{7π}{3}$ | D. | $\frac{5π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2 | B. | 3 | C. | 4 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com