如圖,在多面體ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC是邊長(zhǎng)為2的等邊三角形,AE=1,CD與平面ABDE所成角的正弦值為
.
![]()
(Ⅰ)若F是線段CD的中點(diǎn),證明:EF⊥面DBC;
(Ⅱ)求二面角D-EC-B的平面角的余弦值.
(Ⅰ)詳見(jiàn)解析;(Ⅱ)二面角
的平面角的余弦值為
.
【解析】
試題分析:(Ⅰ)此題關(guān)鍵是建立空間坐標(biāo)系,需要找三條兩兩垂直的直線,注意到△ABC是邊長(zhǎng)為2的等邊三角形,可考慮取AB的中點(diǎn)O,則
,取BD的中點(diǎn)為G,則
,從而得到三條兩兩垂直的直線,這樣就可以建立空間坐標(biāo)系,根據(jù)題中條件,求出個(gè)點(diǎn)坐標(biāo),要證明
面
,只需證
平行平面
的一個(gè)法向量即可,此題也可以用傳統(tǒng)方法來(lái)解;(Ⅱ)求二面角D-EC-B的平面角的余弦值,只需找出平面的一個(gè)法向量,利用法向量來(lái)求即可,值得注意的是,需要判斷二面角是鈍角還是銳角,否則求出的值不對(duì).
試題解析:(Ⅰ)證明:取AB的中點(diǎn)O,連結(jié)OC,OD,則
,
即是
與平面
所成角,
,取BD的中點(diǎn)為G,以
為原點(diǎn),
為
軸,
為
軸,
為
軸建立如圖空間直角坐標(biāo)系,則
,取BC的中點(diǎn)為M,則
面![]()
,所以
,所以
面
;
(Ⅱ)解:由上面知:
,又
取平面DEC的一個(gè)法向量
,又
,設(shè)平面BCE的一個(gè)法向量
,由
,由此得平面BCE的一個(gè)法向量
則
,所以二面角
的平面角的余弦值為
.
考點(diǎn):本小題考查線面垂直的判定以及二面角的求法,考查學(xué)生的化歸與轉(zhuǎn)化能力以及空間想象能力,
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| ∥ |
. |
| ||
| 2 |
| ∥ |
. |
| 1 |
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| 2 |
| ||
. |
| 1 |
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| 1 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| ||
| 2 |
| 1 |
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| 2 |
| ∥ |
. |
| 1 |
| 2 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com