【題目】已知函數(shù)
.
(1)求函數(shù)
的定義域;
(2)判斷
的奇偶性;
(3)方程
是否有實(shí)根?如果有實(shí)根
,請求出一個長度為
的區(qū)間
,使
;如果沒有,請說明理由(注:區(qū)間
的長度
)
【答案】(1)定義域?yàn)?-1,1);(2)見解析;(3)
.
【解析】【試題分析】(1)根據(jù)對數(shù)真數(shù)為正數(shù),求得函數(shù)的定義域?yàn)?/span>
.(2)利用奇偶性的定義判斷出
,故函數(shù)為奇函數(shù).(3)將原方程等價變形為
,構(gòu)造函數(shù)
,利用二分法可判斷出函數(shù)的根在區(qū)間
.
【試題解析】
(1)∵![]()
∴-1<x<1,故函數(shù)的定義域?yàn)?-1,1).
∵f(-x)=log2(1+x)-log2(1-x)=-f(x),且f(x)的定義域關(guān)于原點(diǎn)對稱
∴f(x)為奇函數(shù).
(3)由題意知方程f(x)=x+1等價于log2(1-x)-log2(1+x)=x+1,可化為(x+1)2x+1+x-1=0.
設(shè)g(x)=(x+1)2x+1+x-1,x∈(-1,1),
則g
=
×2
-
-1=
<0,
g(0)=2-1=1>0,
∴g
g(0)<0,故方程在
上必有實(shí)根.
又∵g
=
×2
-
-1=![]()
=
>0,
∴g
g
<0,
故方在
上必有實(shí)根.
又∵區(qū)間長度-
-
=
,
∴滿足題意的一個區(qū)間為
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)
是圓
內(nèi)一點(diǎn),直線
.
(1)若圓
的弦
恰好被點(diǎn)
平分,求弦
所在直線的方程;
(2)若過點(diǎn)
作圓
的兩條互相垂直的弦
,求四邊形
的面積的最大值;
(3)若
,
是
上的動點(diǎn),過
作圓
的兩條切線,切點(diǎn)分別為
.證明:直線
過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)
滿足
,且
的最小值是
.
(1)求
的解析式;
(2)若關(guān)于
的方程
在區(qū)間
上有唯一實(shí)數(shù)根,求實(shí)數(shù)
的取值范圍;
(3)函數(shù)
,對任意
都有
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
(t為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C:ρ=2
cos(θ﹣
).
(Ⅰ) 求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ) 求曲線C上的點(diǎn)到直線l的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)?/span>
的函數(shù)
是奇函數(shù).
(1)求
的值;
(2)判斷函數(shù)
的單調(diào)性并證明;
(2)若關(guān)于
的不等式
在
有解,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在
的展開式中,第6項(xiàng)為常數(shù)項(xiàng).
(Ⅰ)求含x2的項(xiàng)的系數(shù);
(Ⅱ)求展開式中所有的有理項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)滿足:對于s,t∈[0,+∞),都有f(s)≥0,f(t)≥0,且f(s)+f(t)≤f(s+t),則稱函數(shù)f (x)為“T函數(shù)”.
(I)試判斷函數(shù)f1(x)=x2與f2(x)=lg(x+1)是否是“T函數(shù)”,并說明理由;
(Ⅱ)設(shè)f (x)為“T函數(shù)”,且存在x0∈[0,+∞),使f(f(x0))=x0.求證:f (x0) =x0;
(Ⅲ)試寫出一個“T函數(shù)”f(x),滿足f(1)=1,且使集合{y|y=f(x),0≤x≤1)中元素的個數(shù)最少.(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題p:關(guān)于x的方程x2+ax+2=0無實(shí)根,命題q:函數(shù)f(x)=logax在(0,+∞)上單調(diào)遞增,若“p∧q”為假命題,“p∨q”真命題,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,則下列結(jié)論正確的是__________.(寫出所有正確的編號)①
的最小正周期為
;②
在區(qū)間
上單調(diào)遞增;③
取得最大值的
的集合為
④將
的圖像向左平移
個單位,得到一個奇函數(shù)的圖像
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com