欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知圓C:x2+y2+Dx+Ey+3=0關于直線x+y-1=0對稱,圓心C在第二象限,半徑為。
(1)求圓C的方程;
(2)是否存在直線l與圓C相切,且在x軸、y軸上的截距相等?若存在,求直線的方程;若不存在,說明理由。
解:(1)由x2+y2+Dx+Ey+3=0,

∴圓C的圓心C的坐標為
半徑
,得
故D2+E2=20  ①
∵圓C關于直線x+y-1=0對稱,
故圓心在直線x+y-1=0上,
,故D+E=-2,②
由②式,得E=-2-D,
代入①式,得D2+(-2-D)2=20,
即D2+2D-8=0,解得D=-4,或D=2
又∵圓心在第二象限,
,解得D>0,
故D=2,E=-2-2=-4,
∴圓C的方程為:x2+y2+2x-4y+3=0,
即(x+1)2+(y-2)2=2。
(2)直線l在x軸,y軸上的截距相等,設為a,
由(1)知圓C的圓心C(-1,2),
當a=0時,直線l過原點,設其方程為y=kx,
即kx-y=0,
若直線l:kx-y-0與圓C相切,則
即k2-4k-2=0,解得
此時直線l的方程為

當a≠0時,直線l的方程為
即x+y-a=0,
若直線l:x+y-a=0與圓C相切,

即|a-1|=2,解得a=-1,或a=3
此時直線l的方程為x+y+1=0,或x+y-3=0
綜上所述,存在四條直線滿足題意,其方程為或x+y+1=0或x+y-3=0。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知圓C:x2+y2-6x-4y+8=0.以圓C與坐標軸的交點分別作為雙曲線的一個焦點和頂點,則適合上述條件雙曲線的標準方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)一個圓與x軸相切,圓心在直線3x-y=0上,且被直線x-y=0所截得的弦長為2
7
,求此圓方程.
(2)已知圓C:x2+y2=9,直線l:x-2y=0,求與圓C相切,且與直線l垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•普陀區(qū)一模)如圖,已知圓C:x2+y2=r2與x軸負半軸的交點為A.由點A出發(fā)的射線l的斜率為k,且k為有理數(shù).射線l與圓C相交于另一點B.
(1)當r=1時,試用k表示點B的坐標;
(2)當r=1時,試證明:點B一定是單位圓C上的有理點;(說明:坐標平面上,橫、縱坐標都為有理數(shù)的點為有理點.我們知道,一個有理數(shù)可以表示為
qp
,其中p、q均為整數(shù)且p、q互質)
(3)定義:實半軸長a、虛半軸長b和半焦距c都是正整數(shù)的雙曲線為“整勾股雙曲線”.
當0<k<1時,是否能構造“整勾股雙曲線”,它的實半軸長、虛半軸長和半焦距的長恰可由點B的橫坐標、縱坐標和半徑r的數(shù)值構成?若能,請嘗試探索其構造方法;若不能,試簡述你的理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•瀘州一模)已知圓C:x2+y2=r2(r>0)與拋物線y2=40x的準線相切,若直線l:
x
a
y
b
=1
與圓C有公共點,且公共點都為整點(整點是指橫坐標.縱坐標都是整數(shù)的點),那么直線l共有(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C:x2+y2=4與直線L:x+y+a=0相切,則a=(  )

查看答案和解析>>

同步練習冊答案