在平行四邊形ABCD中,
=3
,AE的延長線與CD交于點F,若
=
,
=
,則
=( )
考點:平面向量的基本定理及其意義
專題:平面向量及應(yīng)用
分析:如圖所示,由
=3
,可得
=2,因此
=2,即點F是CD的中點.由
+=,
-=,可得
=
(+)=(+).
利用
=
+即可得出.
解答:
解:如圖所示,

∵
=3
,
∴
=2,
∴
=2,即點F是CD的中點.
∵
+=,
-=,
∴
=
(+)=(+).
∴
=
+=
+×(+)=
+.
故選:B.
點評:本題考查了平行四邊形的性質(zhì)、向量的平行四邊形法則、向量的線性運算,考查了推理能力與計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
復(fù)數(shù)2+i與復(fù)數(shù)
在復(fù)平面上的對應(yīng)點分別是A、B,則∠AOB等于( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:

如圖正方形ABCD的邊長為2
,四邊形BDEF是平行四邊形,BD與AC交于點G,O為GC的中點,F(xiàn)O=
,且FO⊥平面ABCD.
(Ⅰ)求證:AE∥平面BCF;
(Ⅱ)求證:CF⊥平面AEF;
(Ⅲ)求二面角A-CF-B余弦值的大。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知a,b∈{-1,1,2},則直線ax+by-3=0(a
2+b
2≠0)與圓x
2+y
2=4有公共點的概率是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
若一個正四棱錐的左視圖是一個邊長為2的正三角形(如圖),則該正四棱錐的體積是( 。

查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知向量
=(λ,1),
=(λ+2,1),若|
+
|=|
-
|,則實數(shù)λ的值為( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)函數(shù)f(x)=sin
2x+2sinxcosx+3cos
2x
(Ⅰ)若x∈R,求函數(shù)f(x)的最小正周期
(Ⅱ)在△ABC中,a,b,c分別是內(nèi)角A、B、C的 對邊,若bsinA=
accosB,求f(B)的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=ax2+bx+c(a,b,c∈R)滿足下列條件:
①當(dāng)x∈R時,f(x)的最小值為0,且f(x-1)=f(-x-1)成立
②當(dāng)x∈(0,5)時,x≤f(x)≤2|x-1|+1 恒成立
(1)求f(1)的.
(2)求f(x)的解析式
(3)求最大的實數(shù)m(m>1),使得存在實數(shù)t,只要當(dāng)x∈[1,m]時,就有f(x+t)≤x.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
數(shù)列{a
n}滿足a
1=
,
=
-1(n∈N
*),則a
10=( 。
查看答案和解析>>