欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

己知P是橢圓
x2
4
+
y2
3
=1
上的點,F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點,若
PF1
PF2
|
PF1
|•|
PF2
|
=
1
2
,則△FIPF2的面積為(  )
A、
3
3
B、
3
C、2
3
D、3
3
分析:由兩個向量數(shù)量積的定義求得<
PF1
,
PF2
>=
π
3
,△FIPF2中,由余弦定理求出 PF1•PF2 的值,再代入△FIPF2的面積公式進行運算.
解答:解:∵
PF1
PF2
|
PF1
|•|
PF2
|
=
1
2
,
則cos<
PF1
,
PF2
>=
1
2
,
∴<
PF1
PF2
>=
π
3
,a=2,b=
3
,c=1,
△FIPF2中,由余弦定理得
(2c)2=PF12+PF22-2PF1•PF2×cos
π
3
 
=(pF1+PF22-2PF1•PF2-2PF1•PF2 cos
π
3
=16-3 PF1•PF2
即 4=16-3 PF1•PF2,∴PF1•PF2=4,
故△FIPF2的面積為
1
2
 PF1•PF2 sin
π
3
=
3
,
故選B.
點評:本題考查兩個向量的數(shù)量積公式和余弦定理、三角形的面積公式的應用,橢圓的定義及簡單性質得應用.
練習冊系列答案
相關習題

同步練習冊答案