分析 (Ⅰ)由2c=2$\sqrt{3}$,c=$\sqrt{3}$,將$(\frac{{\sqrt{3}}}{2}\;,\;1)$代入$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{a}^{2}-3}=1$,即可求得a和b的值,求得橢圓方程和拋物線E的標準方程;
(Ⅱ)由題意求得直線l1、l2的方程,將直線l1、l2代入代入拋物線方程,利用韋達定理,表示出|AF|•|FB|+|FG|•|HF|=|x1+1|•|x2+1|+|x3+1|•|x4+1|,由基本不等式性質可知$\frac{4}{k^2}=4{k^2}$,即k=±1時,|AF|•|FB|+|FG|•|HF|的最小值為16.
解答 解:(Ⅰ)設橢圓C的標準方程為$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1(a>b>0)$,焦距為2c,
則由題意得$c=\sqrt{3}\;,\;{a^2}=4$,
∴橢圓方程為$\frac{y^2}{4}+{x^2}=1$,拋物線方程為y2=4x.…4分
(Ⅱ)設l1的方程為:y=k(x-1),l2的方程為:$y=-\frac{1}{k}(x-1)$,
設A(x1,y1),B(x2,y2),C(x3,y3),H(x4,y4).
由$\left\{\begin{array}{l}y=k(x-1)\\{y^2}=4x\end{array}\right.$消去y得:k2x2-(2k2+4)x+k2=0,
∴$△=4{k^4}+16{k^2}+16-4{k^4}>0\;,\;{x_1}+{x_2}=2+\frac{4}{k^2}\;,\;{x_1}{x_2}=1$,
同理${x_3}+{x_4}=4{k^2}+2\;,\;{x_3}{x_4}=1$.…6分
∴|AF|•|FB|+|FG|•|HF|=|x1+1|•|x2+1|+|x3+1|•|x4+1|,…8分
=$({x_1}{x_2}+{x_1}+{x_2}+1)+({x_3}{x_4}+{x_3}+{x_4}+1)=8+\frac{4}{k^2}+4{k^2}$,
$≥8+2\sqrt{\frac{4}{k^2}•4{k^2}}=16$,
當且僅當$\frac{4}{k^2}=4{k^2}$,
即k=±1時,|AF|•|FB|+|FG|•|HF|的最小值為16.…12分.
點評 本題考查橢圓及拋物線的標準方程,考查直線與拋物線的位置關系,考查韋達定理,弦長公式及基本不等式的綜合運用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\{\left.x\right|-1<x<-\frac{1}{2}或2<x<3\}$ | B. | {x|2<x<3} | ||
| C. | {x|x<2或x>3} | D. | $\{\left.x\right|-\frac{1}{2}<x<2\}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{x^2}{4}+\frac{y^2}{3}=1$ | B. | $\frac{x^2}{8}+\frac{y^2}{6}=1$ | C. | $\frac{x^2}{2}+{y^2}=1$ | D. | $\frac{x^2}{4}+{y^2}=1$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
| 小明 | 5 | 7 | 6 | 8 |
| 電腦 | 6 | 9 | 5 | 10 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com