已知四棱錐
的底面為直角梯形,
,
,
底面
,且
,
是
的中點(diǎn).
⑴求證:直線
平面
;
⑵若直線
與平面
所成的角為
,求四棱錐
的體積.
⑴見解析;⑵1
解析試題分析:⑴要證直線
平面
,需要在平面
內(nèi)找到一條與
平行的直線.顯然不容易找到;故考慮利用面面平行退出線面平行, 取
的中點(diǎn)
,構(gòu)造平面
,根據(jù)
,
∥
可證.
⑵利用體積公式
.需求出梯形
的面積,根據(jù)
底面
,可知
.
試題解析:⑴證明:取
的中點(diǎn)
,則
,故
平面
;
又四邊形
正方形,∴
∥
,故
∥平面
;
∴平面
平面
,
∴
平面
.
⑵根據(jù)⑴可知,
平面
.所以根據(jù)題意有
;
因?yàn)樗倪呅?img src="http://thumb.zyjl.cn/pic5/tikupic/4f/6/1qcil3.png" style="vertical-align:middle;" />為正方形,所以
為等腰直角三角形.所以
,
根據(jù)
可知
,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/cd/c/hpwxz1.png" style="vertical-align:middle;" />底面
,所以棱錐的高為
.
因?yàn)樘菪?img src="http://thumb.zyjl.cn/pic5/tikupic/74/5/cihpr4.png" style="vertical-align:middle;" />的面積為
,故
.![]()
考點(diǎn):利用面面平行證明線面平行;棱錐體積;
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四邊形ABCD是梯形,四邊形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,
,M是線段AE上的動(dòng)點(diǎn).
(1)試確定點(diǎn)M的位置,使AC∥平面MDF,并說明理由;
(2)在(1)的條件下,求平面MDF將幾何體ADE-BCF分成的兩部分的體積之比.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓錐母線長為6,底面圓半徑長為4,點(diǎn)
是母線
的中點(diǎn),
是底面圓的直徑,半徑
與母線
所成的角的大小等于
.![]()
(1)求圓錐的側(cè)面積和體積.
(2)求異面直線
與
所成的角;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓臺(tái)的上、下底面半徑分別是2、6,且側(cè)面面積等于兩底面面積之和。
(1)求該圓臺(tái)的母線長;(2)求該圓臺(tái)的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直三棱柱ABC
A′B′C′,∠BAC=90°,AB=AC=
,AA′=1,點(diǎn)M,N分別為
A′B和B′C′的中點(diǎn).![]()
(1)證明:MN∥平面A′ACC′;
(2)求三棱錐A′
MNC的體積.(錐體體積公式V=
Sh,其中S為底面面積,h為高)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖①所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD為∠ACB的平分線,點(diǎn)E在線段AC上,CE=4.如圖②所示,將△BCD沿CD折起,使得平面BCD⊥平面ACD,連結(jié)AB,設(shè)點(diǎn)F是AB的中點(diǎn).
圖①
圖②
(1)求證:DE⊥平面BCD;
(2)若EF∥平面BDG,其中G為直線AC與平面BDG的交點(diǎn),求三棱錐B-DEG的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,四邊形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,點(diǎn)E、F分別在BC、AD上,EF∥AB.現(xiàn)將四邊形ABEF沿EF折起,使平面ABEF⊥平面EFDC,設(shè)AD中點(diǎn)為P.![]()
(1)當(dāng)E為BC中點(diǎn)時(shí),求證:CP∥平面ABEF;
(2)設(shè)BE=x,問當(dāng)x為何值時(shí),三棱錐A
CDF的體積有最大值?并求出這個(gè)最大值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四面體ABCD中,△ABC與△DBC都是邊長為4的正三角形.![]()
(1)求證:BC⊥AD;
(2)試問該四面體的體積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)棱長AD的大;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在等腰梯形ABCD中,AB∥CD,AB=BC=AD=2,CD=4,E為邊DC的中點(diǎn),如圖1.將△ADE沿AE折起到△AEP位置,連PB、PC,點(diǎn)Q是棱AE的中點(diǎn),點(diǎn)M在棱PC上,如圖2.![]()
(1)若PA∥平面MQB,求PM∶MC;
(2)若平面AEP⊥平面ABCE,點(diǎn)M是PC的中點(diǎn),求三棱錐AMQB的體積.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com