【題目】在四棱錐
中,
平面ABCD,
是正三角形,AC與BD的交點(diǎn)為M,又
,
,點(diǎn)N是CD中點(diǎn).
![]()
(1)求證:
平面PAD;
(2)求點(diǎn)M到平面PBC的距離.
【答案】(1)證明見解析;(2) ![]()
【解析】
(1)推導(dǎo)出△ABD≌△BCD,從而MN∥AD,由此能證明MN∥平面PAD.
(2)設(shè)M到平面PBC的距離為h,由VM-PBC=VP-BMC,能求出點(diǎn)M到平面PBC的距離.
(1)
是正三角形,所以
,又
,
∴BD所在直線為線段AC的垂直平分線,
所以M為AC的中點(diǎn),
又點(diǎn)N是CD中點(diǎn),所以
,
又
平面PAD,
平面PAD,
所以
平面PAD;
(2)解:設(shè)M到平面PBC的距離為h,在
中,
,
所以![]()
在
中,
,所以
,
在
中,
,
,
,所以
.
由
.即
,
解得
.
所以點(diǎn)M到平面PBC的距離為![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:
(
)的兩焦點(diǎn)與短軸兩端點(diǎn)圍成面積為12的正方形.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)我們稱圓心在橢圓上運(yùn)動(dòng),半徑為
的圓是橢圓的“衛(wèi)星圓”.過原點(diǎn)O作橢圓C的“衛(wèi)星圓”的兩條切線,分別交橢圓C于A、B兩點(diǎn),若直線
、
的斜率為
、
,當(dāng)
時(shí),求此時(shí)“衛(wèi)星圓”的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)
是等差數(shù)列,公差為
,前
項(xiàng)和為
.
(1)設(shè)
,
,求
的最大值.
(2)設(shè)
,
,數(shù)列
的前
項(xiàng)和為
,且對(duì)任意的
,都有
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四面體
中,
分別是線段
的中點(diǎn),
,
,
,直線
與平面
所成的角等于
.
![]()
(Ⅰ)證明:平面
平面
;
(Ⅱ)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
.
(Ⅰ)求證:當(dāng)
時(shí),
;
(Ⅱ)存在
,使得
成立,求a的取值范圍;
(Ⅲ)若
對(duì)
恒成立,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐
中,底面是以
為中心的菱形,
底面
為
上一點(diǎn),且
.
![]()
(1)求
的長(zhǎng);
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)若
在定義域上不單調(diào),求
的取值范圍;
(2)設(shè)
分別是
的極大值和極小值,且
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方體
中,
平面
,垂足為H,給出下面結(jié)論:
①直線
與該正方體各棱所成角相等;
②直線
與該正方體各面所成角相等;
③過直線
的平面截該正方體所得截面為平行四邊形;
④垂直于直線
的平面截該正方體,所得截面可能為五邊形,
其中正確結(jié)論的序號(hào)為( 。
![]()
A. ①③ B. ②④ C. ①②④ D. ①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)
是橢圓
的右焦點(diǎn),點(diǎn)
,
分別是
軸,
軸上的動(dòng)點(diǎn),且滿足
.若點(diǎn)
滿足
(
為坐標(biāo)原點(diǎn)).
(Ⅰ)求點(diǎn)
的軌跡
的方程;
(Ⅱ)設(shè)過點(diǎn)
任作一直線與點(diǎn)
的軌跡交于
,
兩點(diǎn),直線
,
與直線
分別交于點(diǎn)
,
,試判斷以線段
為直徑的圓是否經(jīng)過點(diǎn)
?請(qǐng)說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com