【題目】如圖是由正整數(shù)構(gòu)成的數(shù)表,用
表示第
行第
個數(shù)(
). 此表中
,每行中除首尾兩數(shù)外,其他各數(shù)分別等于其“肩膀”上的兩數(shù)之和.
![]()
(1)寫出數(shù)表的第6行(從左至右依次列出);
(2)設(shè)第
行的第二個數(shù)為
,求
;
(3)令
,記
為數(shù)列
前
項和,求
的最大值,并求此時
的值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD內(nèi)接于圓O
(1)若AB=2,BC=6,CD=4,AC=8,求BD
(2)若AC=
,BC=
+1,∠ADB=
,求AD2+DC2的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】銳角△ABC中,角A、B、C所對的邊分別為a、b、c,且tanA﹣tanB=
(1+tanAtanB).
(Ⅰ)若c2=a2+b2﹣ab,求角A、B、C的大小;
(Ⅱ)已知向量
=(sinA,cosA),
=(cosB,sinB),求|3
﹣2
|的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐S﹣ABCD中,底面ABCD為直角梯形,AB∥CD,BC⊥CD,平面SCD⊥平面ABCD,SC=SD=CD=AD=2AB,M,N分別為SA,SB的中點,E為CD中點,過M,N作平面MNPQ分別與BC,AD交于點P,Q,若
=t
. ![]()
(1)當(dāng)t=
時,求證:平面SAE⊥平面MNPQ;
(2)是否存在實數(shù)t,使得二面角M﹣PQ﹣A的平面角的余弦值為
?若存在,求出實數(shù)t的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)z1 , z2是復(fù)數(shù),則下列命題中的假命題是( )
A.若|z1﹣z2|=0,則
= ![]()
B.若z1=
,則
=z2
C.若|z1|=|z2|,則z1
=z2 ![]()
D.若|z1|=|z2|,則z12=z22
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=.
,直線x=0,x=e,y=0,y=1所圍成的區(qū)域為M,曲線y=f(x)與直線y=1圍成的區(qū)域為N,在區(qū)域M內(nèi)任取一個點P,則點P在區(qū)域N內(nèi)概率為( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c分別為△ABC中角A,B,C的對邊,函數(shù)
且f(A)=5.
(1)求角A的大。
(2)若a=2,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣1|﹣|2x+1|的最大值為m
(1)作函數(shù)f(x)的圖象
(2)若a2+b2+2c2=m,求ab+2bc的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3+2x2﹣ax+1在區(qū)間(﹣1,1)上恰有一個極值點,則實數(shù)a的取值范圍是 .
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com