欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

17.如圖,三棱錐O-ABC中,AO⊥平面OBC,且OA=OB=OC=2,∠BOC=60°,點(diǎn)E,F(xiàn)分別是AB,AC的中點(diǎn),H為EF的中點(diǎn),過EF的動(dòng)平面與線段OA交于點(diǎn)A1,與線段OB,OC的延長(zhǎng)線分別相交于點(diǎn)B1,C1
(Ⅰ)證明:B1C1⊥平面OAH;
(Ⅱ)當(dāng)|BB1|=2|OA1|-2時(shí),求二面角A-A1E-F的正弦值.

分析 (Ⅰ)連結(jié)OE、OF,推導(dǎo)出EF⊥OH,EF⊥AH,從而EF⊥面OAH,推導(dǎo)出EF∥面OB1C1,從而EF∥B1C1,由此能證明B1C1⊥平面OAH.
(Ⅱ)取B1C1的中點(diǎn)M,以O(shè)M,OA為y,z軸建立空間直角坐標(biāo)系,利用向量法能求出二面角A-A1E-F的正弦值.

解答 證明:(Ⅰ)連結(jié)OE、OF,OE=OF,由題意知AE=AF,
而H為EF中點(diǎn),∴EF⊥OH,EF⊥AH,
∵OH∩AH=H,∴EF⊥面OAH,
∵EF∥BC,EF?面OB1C${{\;}_{1}}^{\;}$,∴EF∥面OB1C1,
又EF?面A1B1C1,面A1B1C1∩面OB1C1=B1C1,∴EF∥B1C1,
∴B1C1⊥平面OAH.(5分)
解:(Ⅱ)如圖,取B1C1的中點(diǎn)M,以O(shè)M,OA為y,z軸建立空間直角坐標(biāo)系,
由題得$A(0,0,2),B(1,\sqrt{3},0),C(-1,\sqrt{3},0),E(\frac{1}{2},\frac{{\sqrt{3}}}{2},1),F(xiàn)(-\frac{1}{2},\frac{{\sqrt{3}}}{2},1)$,
設(shè)|OA1|=h,h∈(1,2),則A1(0,0,h),|BB1|=2h-2,
∴B1(h,$\sqrt{3}h$,0),∵A1,E,B1三點(diǎn)共線,∴A1E∥A1B1,
∴$\overrightarrow{{A}_{1}E}$與$\overrightarrow{{A}_{1}{B}_{1}}$平行,∴$\frac{h}{\frac{1}{2}}=\frac{\sqrt{3}h}{\frac{\sqrt{3}}{2}}=\frac{-h}{1-h}$,解得h=$\frac{3}{2}$,∴${A_1}(0,0,\frac{3}{2})$,
$\overrightarrow{A{A}_{1}}$=(0,0,-$\frac{1}{2}$),$\overrightarrow{AE}$=($\frac{1}{2},\frac{\sqrt{3}}{2}$,-1),
設(shè)平面面AA1E的法向量為$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{A{A}_{1}}=-\frac{1}{2}z=0}\\{\overrightarrow{n}•\overrightarrow{AE}=\frac{1}{2}x+\frac{\sqrt{3}}{2}y-z=0}\end{array}\right.$,取x=$\sqrt{3}$,得$\overrightarrow{n}$=($\sqrt{3},-1,0$),
同理得面A1EF的法向量為$\overrightarrow{m}$=(0,1,$\sqrt{3}$),
設(shè)二面角A-A1E-F的平面角為θ,
則|cosθ|=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{4}$,則sinθ=$\frac{\sqrt{15}}{4}$,
∴二面角A-A1E-F的正弦值為$\frac{\sqrt{15}}{4}$.(12分)

點(diǎn)評(píng) 本題考查線面垂直的證明,考查二面角的正弦值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力、空間想象能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想、數(shù)形結(jié)合思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.求值:cos14°cos59°+sin14°sin121°=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.方程$y=-\sqrt{3-{x^2}}$表示的曲線是( 。
A.-個(gè)圓B.一條射線C.半個(gè)圓D.一條直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在圓x2+y2=4上任取一點(diǎn)P,過點(diǎn)P作x軸的垂線段PD,D為垂足.當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),線段PD的中點(diǎn)M的軌跡是什么?并求出該軌跡的焦點(diǎn)和離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.計(jì)算;
(1)cos(α+45°)cos(15°+α)-sin(α+45°)cos(105°+α)
(2)$\frac{{sin{{47}°}-sin{{17}°}cos{{30}°}}}{{cos{{17}°}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知數(shù)集A中有n個(gè)元素,其中有一個(gè)為0.現(xiàn)從A中任取兩個(gè)元素x,y組成有序?qū)崝?shù)對(duì)(x,y).在平面直角坐標(biāo)系中,若(x,y)對(duì)應(yīng)的點(diǎn)中不在坐標(biāo)軸上的共有56個(gè),則n的值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列符號(hào)判斷正確的是( 。
A.sin4>0B.cos(-3)>0C.tan4>0D.tan(-3)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知某幾何體的三視圖如圖所示,則該幾何體的表面積為 ( 。       
A.12B.8+2$\sqrt{3}$C.12+2$\sqrt{3}$D.12+4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求關(guān)于x的不等式ax2-(a+1)x+1<0(a>0)的解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案