【題目】如果
的解集為
,則對于函數(shù)
應(yīng)有
( )
A.
B. ![]()
C.
D. ![]()
【答案】D
【解析】
不等式ax2+bx+c>0的解集為{x|﹣2<x<4},可得:a<0,﹣2,4是ax2+bx+c=0的兩個(gè)實(shí)數(shù)根,利用根與系數(shù)的關(guān)系可得:函數(shù)f(x)=ax2+bx+c=a(x2﹣2x﹣8)=a(x﹣1)2﹣9a,(a<0).再利用二次函數(shù)的圖象與性質(zhì)即可得出.
∵不等式ax2+bx+c>0的解集為{x|﹣2<x<4},
∴a<0,﹣2,4是ax2+bx+c=0的兩個(gè)實(shí)數(shù)根,
∴﹣2+4=﹣
,﹣2×4=
.
那么對于函數(shù)f(x)=ax2+bx+c=a(x2﹣2x﹣8)=a(x﹣1)2﹣9a,(a<0).
此拋物線開口向下,其圖象關(guān)系直線x=1對稱,
∴f(﹣1)=f(3),f(2)>f(3)>f(5),
∴f(2)>f(﹣1)>f(5),
故選:D.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分) 命題
實(shí)數(shù)x滿足
(其中
),命題
實(shí)數(shù)
滿足![]()
(Ⅰ)若
,且
為真,求實(shí)數(shù)
的取值范圍;
(Ⅱ)若
是
的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)復(fù)數(shù)z滿足zi=2﹣i,i為虛數(shù)單位,
p1:|z|=
,
p2:復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在第四象限;
p3:z的共軛復(fù)數(shù)為﹣1+2i,
p4:z的虛部為2i.
其中的真命題為( )
A.p1 , p3
B.p2 , p3
C.p1 , p2
D.p1 , p4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 由經(jīng)驗(yàn)得知,在某商場付款處排隊(duì)等候付款的人數(shù)及概率如下表
排隊(duì)人數(shù) | 0 | 1 | 2 | 3 | 4 | 5人以上 |
概率 | 0.1 | 0.16 | 0.3 | 0.3 | 0.1 | 0.04 |
(1)至多有2人排隊(duì)的概率是多少?
(2)至少有2人排隊(duì)的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)y=sin2x的圖象先向左平移
個(gè)單位長度,然后將所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍(縱坐標(biāo)不變),則所得到的圖象對應(yīng)函數(shù)解析式為( )
A.![]()
B.y=2cos2x
C.y=2sin2x
D.y=cosx
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知y=f(x)是定義在R上的奇函數(shù),且
為偶函數(shù),對于函數(shù)y=f(x)有下列幾種描述:①y=f(x)是周期函數(shù)②x=π是它的一條對稱軸;③(﹣π,0)是它圖象的一個(gè)對稱中心;④當(dāng)
時(shí),它一定取最大值;其中描述正確的是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖在矩形ABCD中,已知AB=3AD,E,F(xiàn)為AB的兩個(gè)三等分點(diǎn),AC,DF交于點(diǎn)G.
(1)證明:EG
DF;
(2)設(shè)點(diǎn)E關(guān)于直線AC的對稱點(diǎn)為
,問點(diǎn)
是否在直線DF上,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在下列4個(gè)函數(shù):①
;②y=sinx;③y=﹣tanx;④y=﹣cos2x、其中在區(qū)間
上增函數(shù)且以π為周期的函數(shù)是(把所有符合條件的函數(shù)序列號都填上)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com