【題目】《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問(wèn)題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無(wú)廣,高二丈,問(wèn):積幾何?”其意思為:“今有底面為矩形的屋脊?fàn)畹男w,下底面寬3丈,長(zhǎng)4丈,上棱長(zhǎng)2丈,高2丈,問(wèn):它的體積是多少?”已知l丈為10尺,該楔體的三視圖如圖所示,其中網(wǎng)格紙上小正方形邊長(zhǎng)為1,則該楔體的體積為( )
![]()
A. 10000立方尺 B. 11000立方尺
C. 12000立方尺 D. 13000立方尺
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(
)是奇函數(shù).
(1)求實(shí)數(shù)
的值;
(2)若
,
,求
的取值范圍.
(3)若
,且
在
上
恒成立,求
的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,(
),求
(1)
;
(2)令
,求
關(guān)于
的函數(shù)關(guān)系式,及
的取值范圍.
(3)求函數(shù)
,(
)的最大值和最小值;并寫出它的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正三棱柱ABC-A1B1C1中,AB=AA1=2,點(diǎn)P,Q分別為A1B1,BC的中點(diǎn).
![]()
(1)求異面直線BP與AC1所成角的余弦值;
(2)求直線CC1與平面AQC1所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
:
(
)的左右焦點(diǎn)分別為
,
且
關(guān)于直線
的對(duì)稱點(diǎn)
在直線
上.
(1)求橢圓的離心率;
(2)若
的長(zhǎng)軸長(zhǎng)為
且斜率為
的直線
交橢圓于
,
兩點(diǎn),問(wèn)是否存在定點(diǎn)
,使得
,
的斜率之和為定值?若存在,求出所有滿足條件的
點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某保險(xiǎn)公司的推銷員中隨機(jī)抽取50名,統(tǒng)計(jì)這些推銷員某月的月銷售額(單位:千元),由統(tǒng)計(jì)結(jié)果得如圖頻數(shù)分別表:
月銷售額 分組 | [12.25,14.75) | [14.75,17.25) | [17.25,19.75) | [19.75,22.25) | [22.25,24.75) |
頻數(shù) | 4 | 10 | 24 | 8 | 4 |
![]()
(1)作出這些數(shù)據(jù)的頻率分布直方圖;
(2)估計(jì)這些推銷員的月銷售額的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)作代表);
(3)根據(jù)以上抽樣調(diào)查數(shù)據(jù),公司將推銷員的月銷售指標(biāo)確定為17.875千元,試判斷是否有60%的職工能夠完成該銷售指標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在棱長(zhǎng)為1正方體
中,點(diǎn)
,
分別為邊
,
的中點(diǎn),將
沿
所在的直線進(jìn)行翻折,將
沿
所在直線進(jìn)行翻折,在翻折的過(guò)程中,下列說(shuō)法錯(cuò)誤的是( )
![]()
A. 無(wú)論旋轉(zhuǎn)到什么位置,
、
兩點(diǎn)都不可能重合
B. 存在某個(gè)位置,使得直線
與直線
所成的角為![]()
C. 存在某個(gè)位置,使得直線
與直線
所成的角為![]()
D. 存在某個(gè)位置,使得直線
與直線
所成的角為![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在四棱錐
中,
為正三角形,
,底面
為平行四邊形,平面
平面
,點(diǎn)
是側(cè)棱
的中點(diǎn),平面
與棱
交于點(diǎn)
.
(1)求證:
;
(2)若
,求平面
與平面
所成二面角(銳角)的余弦值.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com