欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 高中數學 > 題目詳情
(1)若函數f(x)=
2x2-2ax-a-1
的定義域為R,則實數a的取值范圍
[-1,0]
[-1,0]

(2)函數f(x)=log
1
2
|x2-6x+5|
的單調遞增區(qū)間為
(-∞,1),[3,5)
(-∞,1),[3,5)
分析:(1)根據函數f(x)=
2x2-2ax-a-1
的定義域為R,可得2x2-2ax-a-1≥0恒成立,從而問題轉化x2-2ax-a≥0恒成立,從而可求實數a的取值范圍是[-1,0].
(2)由|x2-6x+5|>0,解得:x≠1或x≠5,設u=|x2-6x+5|=|(x-3)2-4|,則函數在(-∞,1),[3,5)上是單調遞減,利用“同增異減”,可得函數f(x)=log
1
2
|x2-6x+5|
的單調遞增區(qū)間.
解答:解:(1)∵函數f(x)=
2x2-2ax-a-1
的定義域為R
2x2-2ax-a-1≥0恒成立
2x2-2ax-a20恒成立
∴x2-2ax-a≥0恒成立
∴4a2+4a≤0
∴-1≤a≤0
∴實數a的取值范圍是[-1,0].
(2)由|x2-6x+5|>0,解得:x≠1或x≠5,
設u=|x2-6x+5|=|(x-3)2-4|,則函數在(-∞,1),[3,5)上是單調遞減,
而要求的函數是以
1
2
為底的,根據“同增異減”,
那么函數f(x)=log
1
2
|x2-6x+5|
的單調遞增區(qū)間為(-∞,1),[3,5)
故答案為:(1)[-1,0];
(2)(-∞,1),[3,5)
點評:本題考查的重點是函數的定義域,函數的單調性,解題的關鍵是將問題轉化為恒成立問題,利用“同增異減”,解決復合函數的單調性問題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

記函數f(x)的定義域為D,若存在x0∈D,使f(x0)=x0成立,則稱以(x0,x0)為坐標的點為函數f(x)圖象上的不動點.
(1)若函數f(x)=
3x+a
x+b
圖象上有兩個關于原點對稱的不動點,求實數a,b應滿足的條件;
(2)設點P(x,y)到直線y=x的距離d=
|x-y|
2
.在(1)的條件下,若a=8,記函數f(x)圖象上的兩個不動點分別為A1,A2,P為函數f(x)圖象上的另一點,其縱坐標yP>3,求點P到直線A1A2距離的最小值及取得最小值時點P的坐標.
(3)下述命題“若定義在R上的奇函數f(x)圖象上存在有限個不動點,則不動點有奇數個”是否正確?若正確,請給予證明;若不正確,請舉一反例.若地方不夠,可答在試卷的反面.

查看答案和解析>>

科目:高中數學 來源: 題型:

min{p,q}=
p,p≤q
q.p>q

(1)若函數f(x)=min{
x
,
2
3
(x-1)}
,求f(x)表達式
(2)求f(x)=min{3|x-p1|,2×3|x-p2|)}=3|x-p1|,對所有實數x成立的充分必要條件(用p1,p2表示);
(3)若f(x)=min{3|x-p1|,2×3|x-p2|)},且f(a)=f(b)(a,bp1,p2為實數,且a<bp1,p2∈(a,b))求f(x)在區(qū)間[a,b]上的單調增區(qū)間的長度和(閉區(qū)間[m,n]的長度定義為n-m).

查看答案和解析>>

科目:高中數學 來源: 題型:

對定義域分別為Df、Dg的函數y=f(x)、y=g(x),規(guī)定:函數h(x)=
f(x)•g(x)(x∈Df且x∈Dg)
f(x)(x∈Df且x∉Dg)
g(x)(x∉Df且x∈Dg).

(1)若函數f(x)=
1
x-1
,g(x)=x2,寫出函數h(x)的解析式;
(2)求(1)問中函數h(x)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a,b為正實數.
(1)若函數f(x)=
lnxx
,求f(x)的單調區(qū)間
(2)若e<a<b(e為自然對數的底),求證:ab>ba;(3)求滿足ab=ba(a≠b)的所有正整數a,b的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•湖北模擬)已知a>0,a≠1,若函數f(x)=
4
4-x2
-
1
2+x
(x>-2)
loga(-x)(x≤-2)
在點x=-2處連續(xù),則a=
16
16

查看答案和解析>>

同步練習冊答案