已知函數(shù)
.
(Ⅰ)請寫出函數(shù)
在每段區(qū)間上的解析式,并在圖中的直角坐標(biāo)系中作出函數(shù)
的圖象;
(II)若不等式
對任意的實(shí)數(shù)
恒成立,求實(shí)數(shù)
的取值范圍.![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0a/e/wr05g1.png" style="vertical-align:middle;" />的函數(shù)
(
為實(shí)數(shù))。
(1)若
是奇函數(shù),求
的值;
(2)當(dāng)
是奇函數(shù)時(shí),證明對任何實(shí)數(shù)
都有
成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
, ![]()
.
(1)若
, 函數(shù)
在其定義域是增函數(shù),求
的取值范圍;
(2)在(1)的結(jié)論下,設(shè)函數(shù)
的最小值;
(3)設(shè)函數(shù)
的圖象
與函數(shù)
的圖象
交于點(diǎn)
,過線段
的中點(diǎn)
作
軸的垂線分別交
、
于點(diǎn)
、
,問是否存在點(diǎn)
,使
在
處的切線與
在
處的切線平行?若存在,求出
的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
,其中
R.
(1)討論
的單調(diào)性;
(2)若
在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)
的取值范圍;
(3)設(shè)函數(shù)
,當(dāng)
時(shí),若
,
,總有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
.
(1)若x=
時(shí),
取得極值,求
的值;
(2)若
在其定義域內(nèi)為增函數(shù),求
的取值范圍;
(3)設(shè)
,當(dāng)
=-1時(shí),證明
在其定義域內(nèi)恒成立,并證明
(
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,若函數(shù)
圖象上任意一點(diǎn)
關(guān)于原點(diǎn)的對稱點(diǎn)
的軌跡恰好是函數(shù)
的圖象.
(1)寫出函數(shù)
的解析式;
(2)當(dāng)
時(shí)總有
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)已知函數(shù)
為有理數(shù)且
),求函數(shù)
的最小值;
(2)①試用(1)的結(jié)果證明命題
:設(shè)
為有理數(shù)且
,若
時(shí),則
;
②請將命題
推廣到一般形式
,并證明你的結(jié)論;
注:當(dāng)
為正有理數(shù)時(shí),有求導(dǎo)公式![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
,證明:
(Ⅰ)對每個
,存在唯一的
,滿足
;
(Ⅱ)對任意
,由(Ⅰ)中
構(gòu)成的數(shù)列
滿足
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)f(x)=log
(
)為奇函數(shù),a為常數(shù).
(Ⅰ)求a的值;
(Ⅱ)證明f(x)在(1,+∞)內(nèi)單調(diào)遞增;
(Ⅲ)若對于[3,4]上的每一個
的值,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com