欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

7.《周髀算經(jīng)》中給出了弦圖,所謂弦圖是由四個全等的直角三角形和中間一個小正方形拼成一個大的正方形,若圖中直角三角形兩銳角分別為α、β,且小正方形與大正方形面積之比為4:9,則cos(α-β)的值為( 。
A.$\frac{5}{9}$B.$\frac{4}{9}$C.$\frac{2}{3}$D.0

分析 設(shè)大的正方形的邊長為1,由已知可求小正方形的邊長,可求cosα-sinα=$\frac{2}{3}$,sinβ-cosβ=$\frac{2}{3}$,且cosα=sinβ,sinα=cosβ,進而利用兩角差的余弦函數(shù)公式,同角三角函數(shù)基本關(guān)系式即可計算得解.

解答 解:設(shè)大的正方形的邊長為1,由于小正方形與大正方形面積之比為4:9,
可得:小正方形的邊長為$\frac{2}{3}$,
可得:cosα-sinα=$\frac{2}{3}$,①sinβ-cosβ=$\frac{2}{3}$,②
由圖可得:cosα=sinβ,sinα=cosβ,
①×②可得:$\frac{4}{9}$=cosαsinβ+sinαcosβ-cosαcosβ-sinαsinβ=sin2β+cos2β-cos(α-β)=1-cos(α-β),
解得:cos(α-β)=$\frac{5}{9}$.
故選:A.

點評 本題主要考查了兩角差的余弦函數(shù)公式,同角三角函數(shù)基本關(guān)系式的綜合應用,考查了數(shù)形結(jié)合思想和轉(zhuǎn)化思想,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

17.在四棱錐P-ABCD中,AD∥BC,AD=AB=DC=$\frac{1}{2}$BC=1,E是PC的中點,面PAC⊥面ABCD.
(Ⅰ)證明:ED∥面PAB;
(Ⅱ)若PC=2,PA=$\sqrt{3}$,求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)$f(x)=sin2x+sin(\frac{π}{3}-2x)$.
(Ⅰ)求f(x)的最大值及相應的x值;
(Ⅱ)設(shè)函數(shù)$g(x)=f(\frac{π}{4}x)$,如圖,點P,M,N分別是函數(shù)y=g(x)圖象的零值點、最高點和最低點,求cos∠MPN的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.在△ABC中,角A、B、C所對的邊分別是a、b、c,已知sinB+sinC=msinA(m∈R),且a2-4bc=0.
(1)當a=2,$m=\frac{5}{4}$時,求b、c的值;
(2)若角A為銳角,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.某班開展一次智力競賽活動,共a,b,c三個問題,其中題a滿分是20分,題b,c滿分都是25分.每道題或者得滿分,或者得0分.活動結(jié)果顯示,全班同學每人至少答對一道題,有1名同學答對全部三道題,有15名同學答對其中兩道題.答對題a與題b的人數(shù)之和為29,答對題a與題c的人數(shù)之和為25,答對題b與題c的人數(shù)之和為20.則該班同學中只答對一道題的人數(shù)是4;該班的平均成績是42.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,已知三棱柱ABC-A1B1C1的底面ABC是等邊三角形,且AA1⊥底面ABC,M為AA1的中點,N在線段AB上,且AN=2NB,點P在CC1上.
(1)證明:平面BMC1⊥平面BCC1B1;
(2)當$\frac{CP}{P{C}_{1}}$為何值時,有PN∥平面BMC1?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)h(x)=(x-a)ex+a.
(1)若x∈[-1,1],求函數(shù)h(x)的最小值;
(2)當a=3時,若對?x1∈[-1,1],?x2∈[1,2],使得h(x1)≥x22-2bx2-ae+e+$\frac{15}{2}$成立,求b的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知F1,F(xiàn)2為橢圓C的兩個焦點,P為C上一點,若△PF1F2的三邊|PF1|,|F1F2|,|PF2|成等差數(shù)列,則C的離心率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知定義在R上的奇函數(shù)f(x)和偶函數(shù)g(x)滿足f(x)=2g(x)+$\frac{x-4}{{x}^{2}+1}$,則下列結(jié)論中正確的序號是①④
①f($\frac{1}{x}$)=f(x);
②f(x)在($\frac{1}{2}$,+∞)上單調(diào)遞減;
③g(x)在(0,+∞)上單調(diào)遞增;
④若f($\frac{1}{{x}^{2}+1}$)+f(4x-4x2-2)≥0,則x∈(-∞,$\frac{1}{3}$]∪[1,+∞)

查看答案和解析>>

同步練習冊答案