【題目】如圖,在四棱錐
中,
,
,
,
,
,
,
平面
,點(diǎn)
在棱
上.
![]()
(1)求證:平面
平面
;
(2)若直線
平面
,求此時(shí)直線
與平面
所成角的正弦值.
【答案】(1)見解析(2)![]()
【解析】
(1)首先可以通過(guò)解三角形求出
的度數(shù),即可得出
,再通過(guò)
平面
,即可得出
,然后根據(jù)線面垂直的相關(guān)性質(zhì)即可得出
平面
,最后根據(jù)面面垂直的相關(guān)性質(zhì)即可證明出平面
平面
;
(2)可通過(guò)構(gòu)建空間直角坐標(biāo)系并借助平面法向量來(lái)得出結(jié)果。
(1)因?yàn)?/span>
平面
,所以
,
![]()
又因?yàn)?/span>
,
,
,
由
,可得
,
所以
,
,即
,
因?yàn)?/span>
,所以
平面
,
因?yàn)?/span>
平面
,所以平面
平面
;
(2)以點(diǎn)
為坐標(biāo)原點(diǎn),
所在的直線為
軸,
所在的直線為
軸,
如圖所示,建立空間直角坐標(biāo)系,
![]()
其中
,
,
,
,
.
從而
,
,
,
設(shè)
,從而得
,
,
設(shè)平面
的法向量為
,
若直線
平面
,滿足
,
即
,
得
,取
,且
,
直線
與平面
所成角的正弦值等于
。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次循環(huán)賽中有2n+1支參賽隊(duì),其中每隊(duì)與其他隊(duì)均只進(jìn)行一場(chǎng)比賽,且比賽結(jié)果中沒(méi)有平局。若三支參賽隊(duì)A、B、C滿足:A擊敗B,B擊敗C,C擊敗A,則稱它們形成一個(gè)“環(huán)形三元組”。求:
(1)環(huán)形三元組的最小可能數(shù)目;
(2)環(huán)形三元組的最大可能數(shù)目。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四面體
中,
分別是線段
的中點(diǎn),
,
,
,直線
與平面
所成的角等于
.
![]()
(Ⅰ)證明:平面
平面
;
(Ⅱ)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】世界那么大,我想去看看,處在具有時(shí)尚文化代表的大學(xué)生們旅游動(dòng)機(jī)強(qiáng)烈,旅游可支配收入日益增多,可見大學(xué)生旅游是一個(gè)巨大的市場(chǎng).為了解大學(xué)生每年旅游消費(fèi)支出(單位:百元)的情況,相關(guān)部門隨機(jī)抽取了某大學(xué)的
名學(xué)生進(jìn)行問(wèn)卷調(diào)查,并把所得數(shù)據(jù)列成如下所示的頻數(shù)分布表:
組別 |
|
|
|
|
|
頻數(shù) |
|
|
|
|
|
(Ⅰ)求所得樣本的中位數(shù)(精確到百元);
(Ⅱ)根據(jù)樣本數(shù)據(jù),可近似地認(rèn)為學(xué)生的旅游費(fèi)用支出
服從正態(tài)分布
,若該所大學(xué)共有學(xué)生
人,試估計(jì)有多少位同學(xué)旅游費(fèi)用支出在
元以上;
(Ⅲ)已知樣本數(shù)據(jù)中旅游費(fèi)用支出在
范圍內(nèi)的
名學(xué)生中有
名女生,
名男生,現(xiàn)想選其中
名學(xué)生回訪,記選出的男生人數(shù)為
,求
的分布列與數(shù)學(xué)期望.
附:若
,則
,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為
(t為參數(shù),0).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為
.
(Ⅰ)寫出曲線C的直角坐標(biāo)方程;
(Ⅱ)若直線l與曲線C交于A,B兩點(diǎn),且AB的長(zhǎng)度為2
,求直線l的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)若
是
的極大值點(diǎn),求
的值;
(2)若
在
上只有一個(gè)零點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(其中
,
為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)若函數(shù)
無(wú)極值,求實(shí)數(shù)
的取值范圍;
(Ⅱ)當(dāng)
時(shí),證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀如圖所示的程序框圖,若輸出的數(shù)據(jù)為141,則判斷框中應(yīng)填入的條件為( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),以
軸正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求
的普通方程和
的直角坐標(biāo)方程;
(2)若
上恰有2個(gè)點(diǎn)到
的距離等于
,求
的斜率.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com