【題目】某大學城校區(qū)與本部校區(qū)之間的駕車單程所需時間為
,
只與道路暢通狀況有關(guān),對其容量為500的樣本進行統(tǒng)計,結(jié)果如下:
| 25 | 30 | 35 | 40 |
頻數(shù)(次) | 100 | 150 | 200 | 50 |
以這500次駕車單程所需時間的頻率代替某人1次駕車單程所需時間的概率.
(1)求
的分布列與
;
(2)某天有3位教師獨自駕車從大學城校區(qū)返回本部校區(qū),記
表示這3位教師中駕車所用時間少于
的人數(shù),求
的分布列與
;
(3)下周某天張老師將駕車從大學城校區(qū)出發(fā),前往本部校區(qū)做一個50分鐘的講座,結(jié)束后立即返回大學城校區(qū),求張老師從離開大學城校區(qū)到返回大學城校區(qū)共用時間不超過120分鐘的概率.
【答案】(1)見解析;(2)見解析;(3)
.
【解析】
(1)以頻率估計頻率,即可取得
的分布列,求出期望,得到概率即可;
(2)判斷分布列是二項分布,然后列出分布列,利用公式求解期望;
(3)設(shè)
分別表示往返所需時間,設(shè)事件
表示“從離開大學城校區(qū)到返回大學城校區(qū)共用事件不超過120分鐘”,則
,求解概率即可.
(1)以頻率估計頻率得
的分布列為:
| 25 | 30 | 35 | 40 |
| 0.2 | 0.3 | 0.4 | 0.1 |
∴
(分鐘),
.
(2)
,
(
).
| 0 | 1 | 2 | 3 |
|
|
|
|
|
.
(3)設(shè)
,
分別表示往返所需時間,設(shè)事件
表示“從離開大學城校區(qū)到返回大學城校區(qū)共用時間不超過120分鐘”,則
.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
.
(1)當
時,求
在區(qū)間
上的最值;
(2)討論函數(shù)
的單調(diào)性;
(3)當
時,有
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和Sn=﹣an﹣(
)n﹣1+2(n∈N*),數(shù)列{bn}滿足bn=2nan .
(Ⅰ)求證數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)cn=log2
,數(shù)列{
}的前n項和為Tn , 求滿足Tn
(n∈N*)的n的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓C:
=1(a>b>0)的中心在原點,焦點在x軸上,焦距為2,且與橢圓x2+
=1有相同離心率,直線l:y=kx+m與橢圓C交于不同的A,B兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若在橢圓C上存在點Q,滿足
,(O為坐標原點),求實數(shù)λ取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和Sn=k3n﹣m,且a1=3,a3=27.
(I)求證:數(shù)列{an}是等比數(shù)列;
(II)若anbn=log3an+1 , 求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓錐曲線 E:
.
(I)求曲線 E的離心率及標準方程;
(II)設(shè) M(x0 , y0)是曲線 E上的任意一點,過原點作⊙M:(x﹣x0)2+(y﹣y0)2=8的兩條切線,分別交曲線 E于點 P、Q.
①若直線OP,OQ的斜率存在分別為k1 , k2 , 求證:k1k2=﹣
;
②試問OP2+OQ2是否為定值.若是求出這個定值,若不是請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖ABCD是平面四邊形,∠ADB=∠BCD=90°,AB=4,BD=2.
(Ⅰ)若BC=1,求AC的長;
(Ⅱ)若∠ACD=30°,求tan∠BDC的值.![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且對任意正整數(shù)n都有an是n與Sn的等差中項,bn=an+1.
(1)求證:數(shù)列{bn}是等比數(shù)列,并求出其通項bn;
(2)若數(shù)列{Cn}滿足Cn=
且數(shù)列{C
}的前n項和為Tn , 證明Tn<2.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知(1+3x)n的展開式中,末三項的二項式系數(shù)的和等于121,求:
(1) 展開式中二項式系數(shù)最大的項;
(2) 展開式中系數(shù)最大的項.(結(jié)果可以以組合數(shù)形式表示)
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com