【題目】在平面直角坐標(biāo)系
中,已知直線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求直線
的普通方程和曲線
的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)
,直線
與曲線
的交點(diǎn)為
、
,求
的值.
【答案】(1)
;
;(2)4
【解析】
(1)直接消去參數(shù),將直線
的參數(shù)方程化為普通方程,利用互化公式將曲線
的極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程;
(2)將直線的參數(shù)方程代入曲線
的普通方程,得到
,得出
,
,化簡(jiǎn)
,代入韋達(dá)定理,即可求出結(jié)果.
解:(1)
的參數(shù)方程消去參數(shù),易得
的普通方程為
,
曲線
:
,
即
,
∴
,
所以曲線
的直角坐標(biāo)方程為:
.
(2)
的參數(shù)方程
(
為參數(shù)),
設(shè)
對(duì)應(yīng)參數(shù)為
,
對(duì)應(yīng)參數(shù)為
,
將
的參數(shù)方程與
聯(lián)立得:
,
得:
,
,
所以![]()
![]()
即
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】每年10月中上旬是小麥的最佳種植時(shí)間,但小麥的發(fā)芽會(huì)受到土壤、氣候等多方面因素的影響.某科技小組為了解晝夜溫差的大小與小麥發(fā)芽的多少之間的關(guān)系,在不同的溫差下統(tǒng)計(jì)了100顆小麥種子的發(fā)芽數(shù),得到了如下數(shù)據(jù):
溫差 | 8 | 10 | 11 | 12 | 13 |
發(fā)芽數(shù) | 79 | 81 | 85 | 86 | 90 |
(1)請(qǐng)根據(jù)統(tǒng)計(jì)的最后三組數(shù)據(jù),求出
關(guān)于
的線性回歸方程
;
(2)若由(1)中的線性回歸方程得到的估計(jì)值與前兩組數(shù)據(jù)的實(shí)際值誤差均不超過(guò)兩顆,則認(rèn)為線性回歸方程是可靠的,試判斷(1)中得到的線性回歸方程是否可靠;
(3)若100顆小麥種子的發(fā)芽率為
顆,則記為
的發(fā)芽率,當(dāng)發(fā)芽率為
時(shí),平均每畝地的收益為
元,某農(nóng)場(chǎng)有土地10萬(wàn)畝,小麥種植期間晝夜溫差大約為
,根據(jù)(1)中得到的線性回歸方程估計(jì)該農(nóng)場(chǎng)種植小麥所獲得的收益.
附:在線性回歸方程
中,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱錐
中,
平面
,底面
為菱形,且有
,
,
是線段
上一點(diǎn),且
與
所成角的正弦值是
.
![]()
(1)求
的大;
(2)若
與平面
所成的角的正弦值是
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)若
是
的一個(gè)極值點(diǎn),判斷
的單調(diào)性;
(2)若
有兩個(gè)極值點(diǎn)
,
,且
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)訄A經(jīng)過(guò)定點(diǎn)
,且與定直線
相切.
(1)求動(dòng)圓圓心
的軌跡方程
;
(2)已知點(diǎn)
,過(guò)點(diǎn)
作直線
與
交于
,
兩點(diǎn),過(guò)點(diǎn)
作
軸的垂線分別與直線
,
交于點(diǎn)
,
(
為原點(diǎn)),求證:
為線段
中點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為擔(dān)任班主任的教師辦理手機(jī)語(yǔ)音月卡套餐,為了解通話時(shí)長(zhǎng),采用隨機(jī)抽樣的方法,得到該校100位班主任每人的月平均通話時(shí)長(zhǎng)
(單位:分鐘)的數(shù)據(jù),其頻率分布直方圖如圖所示,將頻率視為概率.
![]()
(1)求圖中
的值;
(2)估計(jì)該校擔(dān)任班主任的教師月平均通話時(shí)長(zhǎng)的中位數(shù);
(3)在
,
這兩組中采用分層抽樣的方法抽取6人,再?gòu)倪@6人中隨機(jī)抽取2人,求抽取的2人恰在同一組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓的中心在原點(diǎn),其左焦點(diǎn)
與拋物線
的焦點(diǎn)重合,過(guò)
的直線
與橢圓交于
、
兩點(diǎn),與拋物線交于
、
兩點(diǎn).當(dāng)直線
與
軸垂直時(shí),
.
(1)求橢圓的方程;
(2)求
的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(![]()
)在
上至少存在兩個(gè)不同的
,
滿足
,且
在
上具有單調(diào)性,點(diǎn)
和直線
分別為
圖象的一個(gè)對(duì)稱中心和一條對(duì)稱軸,則下列命題中正確的是( )
A.
的最小正周期為![]()
B.![]()
C.
在
上是減函數(shù)
D.將
圖象上每一點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍(縱坐標(biāo)不變),得到
的圖象,則![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com