【題目】如圖,在三棱柱
中,每個側(cè)面均為正方形,
為底邊
的中點,
為側(cè)棱
的中點.
![]()
(Ⅰ)求證:
∥平面
;
(Ⅱ)求證:
平面
;
(Ⅲ)求直線
與平面
所成角的正弦值.
【答案】(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)直線
與平面
所成角的正弦值為![]()
【解析】
![]()
![]()
證明:(Ⅰ)設(shè)
的交點為O,連接
,連接
.
因為
為
的中點,
為
的中點,
所以
∥
且
.又
是
中點,
所以
∥
且
,
所以
∥
且
.
所以,四邊形
為平行四邊形.所以
∥
.
又
平面
,![]()
平面
,則
∥平面
.
(Ⅱ)因為三棱柱各側(cè)面都是正方形,所以
,
.
所以
平面
.
因為
平面
,所以
.
由已知得
,所以
,
所以
平面
.
由(Ⅰ)可知
∥
,所以
平面
.
所以![]()
.
因為側(cè)面是正方形,所以
.
又
,
平面
,
平面
,
所以
平面
.
(Ⅲ)解: 取
中點
,連接
.
在三棱柱
中,因為
平面
,
所以側(cè)面
底面
.
因為底面
是正三角形,且
是
中點,
所以
,所以
側(cè)面
.
所以
是
在平面
上的射影.
所以
是
與平面
所成角.
.
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且(2b-c)cos A=acos C.
(1)求角A的大。
(2)若a=3,b=2c,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】高爾頓(釘)板是在一塊豎起的木板上釘上一排排互相平行、水平間隔相等的圓柱形鐵釘(如圖),并且每一排釘子數(shù)目都比上一排多一個,一排中各個釘子恰好對準上面一排兩相鄰鐵釘?shù)恼醒?從入口處放入一個直徑略小于兩顆釘子間隔的小球,當小球從兩釘之間的間隙下落時,由于碰到下一排鐵釘,它將以相等的可能性向左或向右落下,接著小球再通過兩鐵釘?shù)拈g隙,又碰到下一排鐵釘.如此繼續(xù)下去,在最底層的5個出口處各放置一個容器接住小球.
![]()
(Ⅰ)理論上,小球落入4號容器的概率是多少?
(Ⅱ)一數(shù)學興趣小組取3個小球進行試驗,設(shè)其中落入4號容器的小球個數(shù)為
,求
的分布列與數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】每年的12月4日為我國“法制宣傳日”.天津市某高中團委在2019年12月4日開展了以“學法、遵法、守法”為主題的學習活動.已知該學校高一、高二、高三的學生人數(shù)分別是480人、360人、360人.為檢查該學校組織學生學習的效果,現(xiàn)采用分層抽樣的方法從該校全體學生中選取10名學生進行問卷測試.具體要求:每位被選中的學生要從10個有關(guān)法律、法規(guī)的問題中隨機抽出4個問題進行作答,所抽取的4個問題全部答對的學生將在全校給予表彰.
⑴求各個年級應(yīng)選取的學生人數(shù);
⑵若從被選取的10名學生中任選3人,求這3名學生分別來自三個年級的概率;
⑶若被選取的10人中的某學生能答對10道題中的7道題,另外3道題回答不對,記
表示該名學生答對問題的個數(shù),求隨機變量
的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系
中,曲線
:
(
為參數(shù)).以原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
:
.
(1)求
的普通方程和
的直角坐標方程;
(2)若曲線
與
交于
,
兩點,
,
的中點為
,點
,求
的值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com