(本小題滿分12分)
已知四棱錐
的底面為直角梯形,
∥
,∠
,
⊥底面
,且
,
是
的中點(diǎn).
![]()
(1)證明:平面
⊥平面
;
(2)求
與
所成角的余弦值;
(3)求二面角
的余弦值.
(1)見解析;(2)
與
所成角的余弦值為
.
(3)二面角
的余弦值為
。
【解析】第一問主要考查空間幾何體中線,面位置關(guān)系的證明!掌握好線面位置關(guān)系的判定定理與性質(zhì)定理注意線線,線面,面面之間的轉(zhuǎn)化有利于證明題的解決。第二三問主要是線線角與二面角的求法。掌握利用向量求空間角的方法。
解:(1)∵
⊥底面
,
∴
⊥![]()
又∠![]()
∴
⊥![]()
而
平面
,
平面
,
且![]()
∴
⊥平面
,…………2分
又
∥![]()
∴
⊥平面
,…………3分
又
平面
,
∴平面
⊥平面
.
…………………………4分
(2)由(1)知可以
為原點(diǎn),建立如圖空間直角坐標(biāo)系,
∵
,
是
的中點(diǎn),
∴
, ………………5分
∴
…………………………6分
∴
,
∴
與
所成角的余弦值為
. …………………………8分
(3)∵![]()
記平面
的法向量為![]()
則
即
,令
則
,
∴
…………………………9分
同理可得平面
的法向量為
…………………………10分
∴
…………………………11分
又易知二面角
的平面角為鈍角,
∴二面角
的余弦值為
…………………………12分
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的
、
、
.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:
(I)他們選擇的項(xiàng)目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
![]()
(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com