分析 (Ⅰ)推導(dǎo)出BE⊥DC,AB∥CD,從而AB⊥BE,進(jìn)而∠ABE=90°,將△BCE沿BE折起到△BPE的位置,且平面BPE⊥平面ABED,在翻折過(guò)程中,∠ABE=90°不變,由此能證明△PAB為直角三角形.
(Ⅱ)以E為原點(diǎn),ED為x軸,EB為y軸,EP為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A-PD-E的余弦值.
解答 證明:(Ⅰ)∵邊長(zhǎng)為2的菱形ABCD中,∠BCD=60°,E為DC的中點(diǎn),如圖1所示,![]()
∴BE⊥DC,AB∥CD,∴AB⊥BE,∴∠ABE=90°,
∵將△BCE沿BE折起到△BPE的位置,且平面BPE⊥平面ABED,如圖2所示.
在翻折過(guò)程中,∠ABE=90°不變,
∴在△ABP中,∠ABP=90°,
∴△PAB為直角三角形.
解:(Ⅱ)由(Ⅰ)得∠BED=∠ABE=90°,∴DE⊥BE,
以E為原點(diǎn),ED為x軸,EB為y軸,EP為z軸,建立空間直角坐標(biāo)系,
A(2,$\sqrt{3}$,0),P(0,0,1),D(1,0,0),E(0,0,0),
$\overrightarrow{DP}$=(-1,0,1),$\overrightarrow{DA}$=(1,$\sqrt{3}$,0),$\overrightarrow{EP}$=(0,0,1),$\overrightarrow{ED}$=(1,0,0),
設(shè)平面ADP的法向量$\overrightarrow{m}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{DA}=x+\sqrt{3}y=0}\\{\overrightarrow{m}•\overrightarrow{DP}=-x+z=0}\end{array}\right.$,取x=$\sqrt{3}$,得$\overrightarrow{m}$=($\sqrt{3},-1,\sqrt{3}$),
平面PDE的法向量$\overrightarrow{n}$=(1,0,0),
設(shè)二面角A-PD-E的平面角為θ,
則cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{\sqrt{3}}{\sqrt{7}}$=$\frac{\sqrt{21}}{7}$,
∴二面角A-PD-E的余弦值為$\frac{\sqrt{21}}{7}$.
點(diǎn)評(píng) 本題考查三角形為直角三角形的證明,考查二面角的余弦值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力、空間想象能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -2 | B. | -1 | C. | -4 | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (-2,0]∪(2,+∞) | B. | (-2,+∞) | C. | (-∞,-2)∪(0,2) | D. | (-∞,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2017×22016 | B. | 2018×22015 | C. | 2017×22015 | D. | 2018×22016 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | ①③ | B. | ①④ | C. | ②④ | D. | ②③ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 0 | B. | 10 | C. | 12 | D. | 24 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | ab<ac | B. | ba>ca | C. | logab<logac | D. | $\frac{a}>\frac{a}{c}$ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com