(本小題滿分15分) 已知拋物線C的頂點在原點, 焦點為F(0,1).
(1) 求拋物線C的方程;
(2)在拋物線C上是否存在點P, 使得過點P
的直線交C于另一點Q,滿足PF⊥QF, 且
PQ與C在點P處的切線垂直.若存在,求出
點P的坐標(biāo); 若不存在,請說明理由.
(1) 解: 設(shè)拋物線C的方程是x2 = ay, 高則
,
即a = 4 .
故所求拋物線C的方程為x2 = 4y . …………………(5分)
(2) 解:設(shè)P(x1,
y1), Q(x2, y2) , 則拋物線C在點P處的切線方程是:
,
直線PQ的方程是:
.
將上式代入拋物線C的方程, 得:
,
故 x1+x2=
, x1x2=-8-4y1,所以 x2=
-x1 , y2=
+y1+4 .
而
=(x1, y1-1),
=(x2, y2-1),
×
=x1 x2+(y1-1) (y2-1)=x1 x2+y1 y2-(y1+y2)+1=-4(2+y1)+ y1(
+y1+4)-(
+2y1+4)+1=
-2y1 -
-7=(
+2y1+1)-4(
+y1+2)=(y1+1)2-
=
=0,
故 y1=4, 此時, 點P的坐標(biāo)是(±4,4) . 經(jīng)檢驗, 符合題意.
所以, 滿足條件的點P存在, 其坐標(biāo)為P(±4,4). ………………(15分)
【解析】略
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省高三上學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分15分)
已知函數(shù)![]()
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若
,試分別解答以下兩小題.
(ⅰ)若不等式
對任意的
恒成立,求實數(shù)
的取值范圍;
(ⅱ)若
是兩個不相等的正數(shù),且
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三下學(xué)期3月聯(lián)考理科數(shù)學(xué) 題型:解答題
(本小題滿分15分).
已知
、
分別為橢圓
:
的
上、下焦點,其中
也是拋物線
:
的焦點,
點
是
與
在第二象限的交點,且
。
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點P(1,3)和圓
:
,過點P的動直線
與圓
相交于不同的兩點A,B,在線段AB取一點Q,滿足:
,
(
且
)。求證:點Q總在某定直線上。
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省高三上學(xué)期第三次月考數(shù)學(xué)文卷 題型:解答題
(本小題滿分15分)
如圖已知,橢圓
的左、右焦點分別為
、
,過
的直線
與橢圓相交于A、B兩點。
(Ⅰ)若
,且
,求橢圓的離心率;
(Ⅱ)若
求
的最大值和最小值。
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆浙江省寧波市高一上學(xué)期期末考試數(shù)學(xué) 題型:解答題
(本小題滿分15分)若函數(shù)
在定義域內(nèi)存在區(qū)間
,滿足
在
上的值域為
,則稱這樣的函數(shù)
為“優(yōu)美函數(shù)”.
(Ⅰ)判斷函數(shù)
是否為“優(yōu)美函數(shù)”?若是,求出
;若不是,說明理由;
(Ⅱ)若函數(shù)
為“優(yōu)美函數(shù)”,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年江蘇省高二下學(xué)期期中考試?yán)頂?shù) 題型:解答題
(本小題滿分15分)在5道題中有3道理科題和2道文科題,如果不放回地依次抽取2道題.求:
(1)第1次抽到理科題的概率;
(2)第1次和第2次都抽到理科題的概率;
(3)在第1次抽到理科題的條件下,第2次抽到文科題的概率
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com