【題目】有著“中國碳谷”之稱的安徽省淮北市,名優(yōu)特產(chǎn)眾多,其中“塔山石榴”因其青皮軟籽、籽粒飽滿、晶瑩剔透、汁多味甘而享譽天下.現(xiàn)調(diào)查表明,石榴的甜度與海拔、日照時長、晝夜溫差有著極強(qiáng)的相關(guān)性,分別用
表示石榴甜度與海拔、日照時長、溫差的相關(guān)程度,并對它們進(jìn)行量化:0表示一般,1表示良,2表示優(yōu),再用綜合指標(biāo)
的值評定石榴的等級,若
則為一級;若
則為二級;若
則為三級.
近年來,周邊各地市也開始發(fā)展石榴的種植,為了了解目前石榴在周邊地市的種植情況,研究人員從不同地市隨機(jī)抽取了12個石榴種植園,得到如下結(jié)果:
種植園編號 | A | B | C | D | E | F |
|
|
|
|
|
|
|
種植園編號 | G | H | I | J | K | L |
|
|
|
|
|
|
|
(1)若有石榴種植園120個,估計等級為一級的石榴種植園的數(shù)量;
(2)在所取樣本的二級和三級石榴種植園中任取2個,
表示取到三級石榴種植園的數(shù)量,求隨機(jī)變量
的分布列及數(shù)學(xué)期望.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某公司一種產(chǎn)品的日銷售量
(單位:百件)關(guān)于日最高氣溫
(單位:
)的散點圖.
![]()
數(shù)據(jù):
| 13 | 15 | 19 | 20 | 21 |
| 26 | 28 | 30 | 18 | 36 |
(1)請?zhí)蕹唤M數(shù)據(jù),使得剩余數(shù)據(jù)的線性相關(guān)性最強(qiáng),并用剩余數(shù)據(jù)求日銷售量
關(guān)于日最高氣溫
的線性回歸方程
;
(2)根據(jù)現(xiàn)行《重慶市防暑降溫措施管理辦法》.若氣溫超過36度,職工可享受高溫補(bǔ)貼.已知某日該產(chǎn)品的銷售量為53.1,請用(1)中求出的線性回歸方程判斷該公司員工當(dāng)天是否可享受高溫補(bǔ)貼?
附:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某海域有
兩個島嶼,
島在
島正東4海里處,經(jīng)多年觀察研究發(fā)現(xiàn),某種魚群洄游的路線是曲線
,曾有漁船在距
島、
島距離和為8海里處發(fā)出過魚群。以
所在直線為
軸,
的垂直平分線為
軸建立平面直角坐標(biāo)系.
![]()
(1)求曲線
的標(biāo)準(zhǔn)方程;
(2)某日,研究人員在
兩島同時用聲納探測儀發(fā)出不同頻率的探測信號(傳播速度相同),
兩島收到魚群在
處反射信號的時間比為
,問你能否確定
處的位置(即點
的坐標(biāo))?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】黨的十九大明確把精準(zhǔn)脫貧作為決勝全面建成小康社會必須打好的三大攻堅戰(zhàn)之一,為堅決打贏脫貧攻堅戰(zhàn),某幫扶單位為幫助定點扶貧村扶貧. 此幫扶單位為了了解某地區(qū)貧困戶對其所提供的幫扶的滿意度,隨機(jī)調(diào)查了40個貧困戶,得到貧困戶的滿意度評分如下:
貧困戶編號 | 評分 | 貧困戶編號 | 評分 | 貧困戶編號 | 評分 | 貧困戶編號 | 評分 | |||
1 2 3 4 5 6 7 8 9 10 | 78 73 81 92 95 85 79 84 63 86 | 11 12 13 14 15 16 17 18 19 20 | 88 86 95 76 97 78 88 82 76 89 | 21 22 23 24 25 26 27 28 29 30 | 79 83 72 74 91 66 80 83 74 82 | 31 32 33 34 35 36 37 38 39 40 | 93 78 75 81 84 77 81 76 85 89 |
用系統(tǒng)抽樣法從40名貧困戶中抽取容量為10的樣本,且在第一分段里隨機(jī)抽到的評分?jǐn)?shù)據(jù)為92.
(1)請你列出抽到的10個樣本的評分?jǐn)?shù)據(jù);
(2)計算所抽到的10個樣本的均值
和方差
;
(3)在(2)條件下,若貧困戶的滿意度評分在
之間,則滿意度等級為“
級”.運用樣本估計總體的思想,現(xiàn)從(1)中抽到的10個樣本的滿意度為“
級”貧困戶中隨機(jī)地抽取2戶,求所抽到2戶的滿意度均評分均“超過80”的概率.
(參考數(shù)據(jù):
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
,
為橢圓E:
的左、右焦點,過點
的直線l與橢圓E有且只有一個交點T.
(1)求
面積的取值范圍.
(2)若有一束光線從點
射出,射在直線l上的T點上,經(jīng)過直線l反射后,試問反射光線是否恒過定點?若是,請求出該定點;若否,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為慶祝建國70周年,校園文化節(jié)舉行有獎答題活動,現(xiàn)有A,B兩種題型,從A類題型中抽取1道,從B類題型中抽取2道回答,答對3道題獲新華書店面值為15元的圖書代金券,答對2道題獲面值為10元的圖書代金券,答對1道題獲面值為5元的圖書代金券,沒有答對獲面值為1元的圖書代金券(作為鼓勵).甲同學(xué)參加此活動答對A類題的概率為
,答對B類題的概率為
.
(Ⅰ)求甲答對1道題的概率;
(Ⅱ)設(shè)甲參加一次活動所獲圖書代金券的面值為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,其中
,e是自然對數(shù)的底數(shù).
(1)若
是
上的增函數(shù),求實數(shù)a的取值范圍;
(2)若
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系
中,己知拋物線
的焦點為
,點
是第一象限內(nèi)拋物線
上的一點,點
的坐標(biāo)為![]()
![]()
(1)若
,求點
的坐標(biāo);
(2)若
為等腰直角三角形,且
,求點
的坐標(biāo);
(3)弦
經(jīng)過點
,過弦
上一點
作直線
的垂線,垂足為點
,求證:“直線
與拋物線相切”的一個充要條件是“
為弦
的中點”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
滿足:①定義為
;②
.
(1)求
的解析式;
(2)若
;均有
成立,求
的取值范圍;
(3)設(shè)
,試求方程
的解.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com