| A. | 12-2$\sqrt{2}$ | B. | 12+2$\sqrt{2}$ | C. | 10+2$\sqrt{5}$ | D. | 10-2$\sqrt{5}$ |
分析 由已知得P點軌跡是以DC為直徑位于平面ABCD內(nèi)的半圓,取DC中點O,D1C1中點F,AB中點E,以O(shè)為原點,OE為x軸,OC為y軸,OF為z軸,建立空間直角坐標系,利用向量法能求出當P運動時,A1P2的最小值.
解答
解:∵正方體ABCD-A1B1C1D1的棱長為2,P是底面ABCD內(nèi)一動點,且滿足PC⊥PD,
∴P點軌跡是以DC為直徑位于平面ABCD內(nèi)的半圓,
取DC中點O,D1C1中點F,AB中點E,
以O(shè)為原點,OE為x軸,OC為y軸,OF為z軸,建立空間直角坐標系,
則P(cosθ,sinθ,0),0≤θ≤2π,A1(2,-1,2),
∴$\overrightarrow{{A}_{1}P}$=(2-cosθ,-1-sinθ,2),
∴A1P2=${\overrightarrow{{A}_{1}P}}^{2}$=(2-cosθ)2+(-1-sinθ)2+4
=4-4cosθ+cos2θ+1+2sinθ+sin2θ+4
=10+2$\sqrt{5}$sin(θ+α),
∴當P運動時,A1P2的最小值是10-2$\sqrt{5}$.
故選:D.
點評 本題考查線段平方的最小值的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com