【題目】在三棱錐P﹣ABC中,AP=AB,平面PAB⊥平面ABC,∠ABC=90°,D,E分別為PB,BC的中點(diǎn).
(1)求證:DE∥平面PAC;
(2)求證:DE⊥AD.
![]()
【答案】(1)見解析;(2)見解析.
【解析】
(1)利用中位線證得
,根據(jù)線面平行的判定定理,可證得
平面
.(2)利用面面垂直的性質(zhì)定理,證得
平面
,得到
,根據(jù)等腰三角形的性質(zhì)得到
,由此證得
平面
,進(jìn)而證得
.
證明:(1)因為D,E分別為PB,BC的中點(diǎn),
所以DE∥PC,
又DE平面PAC,PC平面PAC,
故DE∥平面PAC.
(2)因為AP=AB,PD=DB,所以AD⊥PB,
因為平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,
又BC⊥AB,BC平面ABC,所以BC⊥平面PAB,
因為AD平面PAB,所以AD⊥BC,
又PB∩BC=B,PB,BC平面ABC,故AD⊥平面PBC,
因為DE平面PBC,所以DE⊥AD.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,修建一條公路需要一段環(huán)湖彎曲路段與兩條直道平滑連接(相切).已知環(huán)湖彎曲路段為某三次函數(shù)圖像的一部分,則該函數(shù)的解析式為( )
![]()
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
兩焦點(diǎn)分別為
是橢圓在第一象限弧上一點(diǎn),并滿足
,過P作傾斜角互補(bǔ)的兩條直線
分別交橢圓于
兩點(diǎn).
![]()
(1)求
點(diǎn)坐標(biāo);
(2)求證:直線
的斜率為定值;
(3)求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形ABCD中,AB∥CD,AD⊥AB,AB=2CD=4,AD=2,過點(diǎn)C作CO⊥AB,垂足為O,將△OBC沿CO折起,如圖2使得平面CBO與平面AOCD所成的二面角的大小為θ(0<θ<π),E,F(xiàn)分別為BC,AO的中點(diǎn) ![]()
(1)求證:EF∥平面ABD
(2)若θ=
,求二面角F﹣BD﹣O的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={y|y=
},B={x|y=lg(x﹣2x2)},則R(A∩B)=( )
A.[0,
)
B.(﹣∞,0)∪[
,+∞)
C.(0,
)
D.(﹣∞,0]∪[
,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線C的頂點(diǎn)在原點(diǎn)O,過點(diǎn)
,其焦點(diǎn)F在x軸上.
求拋物線C的標(biāo)準(zhǔn)方程;
斜率為1且與點(diǎn)F的距離為
的直線
與x軸交于點(diǎn)M,且點(diǎn)M的橫坐標(biāo)大于1,求點(diǎn)M的坐標(biāo);
是否存在過點(diǎn)M的直線l,使l與C交于P、Q兩點(diǎn),且
若存在,求出直線l的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx.
(Ⅰ)設(shè)函數(shù)g(x)=
,求g(x)的單調(diào)區(qū)間;
(Ⅱ)若方程f(x)=t有兩個不相等的實數(shù)根x1 , x2 , 求證:x1+x2
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2x+a(ex﹣1+e﹣x+1)有唯一零點(diǎn),則a=( )
A.﹣ ![]()
B.![]()
C.![]()
D.1
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com