【題目】已知函數(shù)
.
(1)當(dāng)
,求函數(shù)
的單調(diào)區(qū)間;
(2)若函數(shù)
在
上是減函數(shù),求
的最小值;
(3)證明:當(dāng)
時(shí),
.
【答案】(1) 函數(shù)
的單調(diào)遞減區(qū)間是
,單調(diào)遞增區(qū)間是
.
(2)
的最小值為
.
(3)證明見(jiàn)解析.
【解析】分析:函數(shù)
的定義域?yàn)?/span>
,
(1)函數(shù)
,據(jù)此可知函數(shù)
的單調(diào)遞減區(qū)間是
,單調(diào)遞增區(qū)間是![]()
(2)由題意可知
在
上恒成立.據(jù)此討論可得
的最小值為
.
(3)問(wèn)題等價(jià)于
.構(gòu)造函數(shù)
,則
取最小值
.
設(shè)
,則
.由于
,據(jù)此可知題中的結(jié)論成立.
詳解:函數(shù)
的定義域?yàn)?/span>
,
(1)函數(shù)
,
當(dāng)
且
時(shí),
;
當(dāng)
時(shí),
,
所以函數(shù)
的單調(diào)遞減區(qū)間是
,
單調(diào)遞增區(qū)間是![]()
(2)因在
上
為減函數(shù),
故
在
上恒成立.
所以當(dāng)
時(shí),
,
又
,
故當(dāng)
,即
時(shí),
.
所以
,于是
,
故
的最小值為
.
(3)問(wèn)題等價(jià)于
.
令
,則
,
當(dāng)
時(shí),
取最小值
.
設(shè)
,則
,
知
在
上單調(diào)遞增,在
上單調(diào)遞減.
∴
.
∵
,
∴
,
∴![]()
故當(dāng)
時(shí),
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】古希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內(nèi)到兩個(gè)定點(diǎn)
的距離之比為定值
的點(diǎn)的軌跡是圓”.后來(lái),人們將這個(gè)圓以他的名字命名,稱(chēng)為阿波羅尼斯圓,簡(jiǎn)稱(chēng)阿氏圓在平面直角坐標(biāo)系
中,
點(diǎn)
.設(shè)點(diǎn)
的軌跡為
,下列結(jié)論正確的是( )
A.
的方程為![]()
B. 在
軸上存在異于
的兩定點(diǎn)
,使得![]()
C. 當(dāng)
三點(diǎn)不共線(xiàn)時(shí),射線(xiàn)
是
的平分線(xiàn)
D. 在
上存在點(diǎn)
,使得![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為比較甲、乙兩地某月11時(shí)的氣溫情況,隨機(jī)選取該月中的5天中11時(shí)的氣溫?cái)?shù)據(jù)(單位:℃)制成如圖所示的莖葉圖,考慮以下結(jié)論:
①甲地該月11時(shí)的平均氣溫低于乙地該月11時(shí)的平均氣溫
②甲地該月11時(shí)的平均氣溫高于乙地該月11時(shí)的平均氣溫
③甲地該月11時(shí)的氣溫的標(biāo)準(zhǔn)差小于乙地該月11時(shí)的氣溫的標(biāo)準(zhǔn)差
④甲地該月11時(shí)的氣溫的標(biāo)準(zhǔn)差大于乙地該月11時(shí)的氣溫的標(biāo)準(zhǔn)差
其中根據(jù)莖葉圖能得到的正確結(jié)論的編號(hào)為( )![]()
A.①③
B.①④
C.②③
D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)有
、
兩個(gè)崗位招聘大學(xué)畢業(yè)生,其中第一天收到這兩個(gè)崗位投簡(jiǎn)歷的大學(xué)生人數(shù)如下表:
|
| 總計(jì) | |
女生 | 12 | 8 | 20 |
男生 | 24 | 56 | 80 |
總計(jì) | 36 | 64 | 100 |
(1)根據(jù)以上數(shù)據(jù)判斷是有
的把握認(rèn)為招聘的
、
兩個(gè)崗位與性別有關(guān)?
(2)從投簡(jiǎn)歷的女生中隨機(jī)抽取兩人,記其中投
崗位的人數(shù)為
,求
的分布列和數(shù)學(xué)期望.
參考公式:
,其中
.
參考數(shù)據(jù):
| 0.050 | 0.025 | 0.010 |
| 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)需要設(shè)計(jì)一個(gè)倉(cāng)庫(kù),由上下兩部分組成,上部的形狀是正四棱錐
,下部的形狀是正四棱柱
(如圖所示),并要求正四棱柱的高
是正四棱錐的高
的4倍.
![]()
(1)若
,
,則倉(cāng)庫(kù)的容積是多少?
(2)若正四棱錐的側(cè)棱長(zhǎng)為
,當(dāng)
為多少時(shí),下部的正四棱柱側(cè)面積最大,最大面積是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面四邊形ACBD(圖①)中,△ABC與△ABD均為直角三角形且有公共斜邊AB,設(shè)AB=2,∠BAD=30°,∠BAC=45°,將△ABC沿AB折起,構(gòu)成如圖②所示的三棱錐C′﹣ABC,且使
.
(Ⅰ)求證:平面C′AB⊥平面DAB;
(Ⅱ)求二面角A﹣C′D﹣B的余弦值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某校高三年級(jí)800名學(xué)生中隨機(jī)抽取50名測(cè)量身高,據(jù)測(cè)量被抽取的學(xué)生的身高全部介于155cm和195cm之間,將測(cè)量結(jié)果按如下方式分成八組:第一組[155,160),第二組[160,165),……,第八組[190.195],下圖是按上述分組方法得到的頻率分布直方圖.
![]()
(1)求第七組的頻數(shù);
(2)試估計(jì)這所學(xué)校高三年級(jí)800名學(xué)生中身高在180cm以上(含180cm)的人數(shù)為多少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】東莞市攝影協(xié)會(huì)準(zhǔn)備在2019年10月舉辦主題為“慶祖國(guó)70華誕——我們都是追夢(mèng)人”攝影圖片展.通過(guò)平常人的鏡頭記錄國(guó)強(qiáng)民富的幸福生活,向祖國(guó)母親的生日獻(xiàn)禮,攝影協(xié)會(huì)收到了來(lái)自社會(huì)各界的大量作品,打算從眾多照片中選取100張照片展出,其參賽者年齡集中在
之間,根據(jù)統(tǒng)計(jì)結(jié)果,做出頻率分布直方圖如圖:
![]()
(1)求頻率分布直方圖中
的值,并根據(jù)頻率分布直方圖,求這100位攝影者年齡的樣本平均數(shù)
和中位數(shù)
(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表);
(2)為了展示不同年齡作者眼中的祖國(guó)形象,攝影協(xié)會(huì)按照分層抽樣的方法,計(jì)劃從這100件照片中抽出20個(gè)最佳作品,并邀請(qǐng)相應(yīng)作者參加“講述照片背后的故事”座談會(huì).
①在答題卡上的統(tǒng)計(jì)表中填出每組相應(yīng)抽取的人數(shù):
年齡 |
|
|
|
|
|
人數(shù) |
②若從年齡在
的作者中選出2人把這些圖片和故事整理成冊(cè),求這2人至少有一人的年齡在
的概率.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com