分析 (I)求出函數(shù)f(x)的導(dǎo)數(shù),由題意得f′(3)=0,解方程可得a=4,求得[1,4]上函數(shù)f(x)的單調(diào)區(qū)間,即可得到最值;
(II)求得h(x)的解析式和導(dǎo)數(shù),由題意得,h′(x)≥0在(0,+∞)恒成立,由參數(shù)分離和基本不等式,即可得到a的范圍.
解答 解:(I)f′(x)=3x2-2ax-3,
由題意得f′(3)=0,即27-6a-3=0,
解得a=4,
f′(x)=3x2-8x-3=3(x-3)(x+$\frac{1}{3}$),
當(dāng)x∈(1,3),f′(x)<0,f(x)單調(diào)遞減,
當(dāng)x∈(3,4),f′(x)>0,f(x)單調(diào)遞增,
即有f(x)在[1,4]上的最大值為f(1)=-6,最小值為f(3)=-18;
(II)h(x)=f(x)-g(x)=x3-ax2+3x,
由題意得,h′(x)=3x2-2ax+3≥0在(0,+∞)恒成立,
即$a≤\frac{3}{2}({x+\frac{1}{x}})$在(0,+∞)恒成立,
而${({x+\frac{1}{x}})_{min}}=2$,
所以a≤3.
則實(shí)數(shù)a的取值范圍為(-∞,3].
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求單調(diào)區(qū)間和極值、最值,主要考查不等式恒成立問題轉(zhuǎn)化為求函數(shù)的最值問題,考查運(yùn)算能力,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{3}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com