【題目】中國古代的數(shù)學(xué)家們最早發(fā)現(xiàn)并應(yīng)用勾股定理,而最先對(duì)勾股定理進(jìn)行證明的是三國時(shí)期的數(shù)學(xué)家趙爽.趙爽創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結(jié)合的方法,給出了勾股定理的詳細(xì)證明。在這幅“勾股圓方圖”中,
個(gè)相等的直角三角形再加上中間的那個(gè)小正方形組成一個(gè)大的正方形。若直角三角形的較小銳角
的正切值為
,現(xiàn)向該正方形區(qū)域內(nèi)投擲-枚飛鏢,則飛鏢落在小正方形內(nèi)(陰影部分)的概率是( )
![]()
A.
B. ![]()
C.
D. ![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】利民中學(xué)為了了解該校高一年級(jí)學(xué)生的數(shù)學(xué)成績,從高一年級(jí)期中考試成績中抽出100名學(xué)生的成績,由成績得到如下的頻率分布直方圖.
![]()
根據(jù)以上頻率分布直方圖,回答下列問題:
(1)求這100名學(xué)生成績的及格率;(大于等于60分為及格)
(2)試比較這100名學(xué)生的平均成績和中位數(shù)的大小.(精確到0.1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地棚戶區(qū)改造建筑平面示意圖如圖所示,經(jīng)規(guī)劃調(diào)研確定,棚改規(guī)劃建筑用地區(qū)域近似為圓面,該圓面的內(nèi)接四邊形
是原棚戶區(qū)建筑用地,測量可知邊界
萬米,
萬米,
萬米.
(1)請(qǐng)計(jì)算原棚戶區(qū)建筑用地
的面積及
的長;
(2)因地理?xiàng)l件的限制,邊界
不能更改,而邊界
可以調(diào)整,為了提高棚戶區(qū)建筑用地的利用率,請(qǐng)?jiān)趫A弧
上設(shè)計(jì)一點(diǎn)
,使得棚戶區(qū)改造后的新建筑用地
的面積最大,并求出最大值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線
和橢圓
有公共的焦點(diǎn),且離心率為
.
(Ⅰ)求雙曲線
的方程.
(Ⅱ)經(jīng)過點(diǎn)
作直線
交雙曲線
于
,
兩點(diǎn),且
為
的中點(diǎn),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,
分別是橢圓
的左、右焦點(diǎn),
是橢圓
的頂點(diǎn),
是直線
與橢圓
的另一個(gè)交點(diǎn),
.
![]()
(1)求橢圓
的離心率;
(2)已知
的面積為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,過底面是矩形的四棱錐FABCD的頂點(diǎn)F作EF∥AB,使AB=2EF,且平面ABFE⊥平面ABCD,若點(diǎn)G在CD上且滿足DG=G
.
![]()
求證:(1)FG∥平面AED;
(2)平面DAF⊥平面BAF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四邊形
的頂點(diǎn)
,
,
,
,
為坐標(biāo)原點(diǎn).
(
)此四邊形是否有外接圓,若有,求出外接圓的方程;若沒有,請(qǐng)說明理由.
(
)記
的外接圓為
,過
上的點(diǎn)
作圓
的切線
,設(shè)與
軸、
軸的正半軸分別交于點(diǎn)
、
,求
面積的最小值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com