欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

【題目】設函數(shù).

(1)若函數(shù)在區(qū)間為自然對數(shù)的底數(shù))上有唯一的零點,求實數(shù)的取值范圍;

(2)若在為自然對數(shù)的底數(shù))上存在一點,使得成立,求實數(shù)的取值范圍.

【答案】(1)(2).

【解析】

1)求得,對的范圍分類,即可判斷函數(shù)的單調(diào)性,結(jié)合即可判斷函數(shù)在區(qū)間上是否有唯一的零點,問題得解。

2)將問題轉(zhuǎn)化為:函數(shù)上的最小值小于零.求得,對的范圍分類即可判斷函數(shù)的單調(diào)性,從而求得的最小值,問題得解。

(1),其中.

①當時,恒成立,單調(diào)遞增,

又∵,函數(shù)在區(qū)間上有唯一的零點,符合題意.

②當時,恒成立,單調(diào)遞減,

又∵,函數(shù)在區(qū)間上有唯一的零點,符合題意.

③當時,時,單調(diào)遞減,

又∵,∴,

∴函數(shù)在區(qū)間有唯一的零點,

時,,單調(diào)遞增,

時符合題意,即,

時,函數(shù)在區(qū)間上有唯一的零點;

的取值范圍是.

(2)在上存在一點,使得成立,等價于上有解,即函數(shù)上的最小值小于零.

,

①當時,即時,上單調(diào)遞減,所以的最小值為,由可得,∵,∴;

②當時,即時,上單調(diào)遞增,所以的最小值為,由可得;

③當時,即時,

可得的最小值為,∵,∴,所以不成立.

綜上所述:可得所求的取值范圍是.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓經(jīng)過點,且其右焦點與拋物線的焦點重合.

1)求橢圓的方程;

2)直線經(jīng)過點與橢圓相交于兩點,與拋物線相交于兩點.的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓與拋物線的準線交于,兩點,且

(1)求拋物線的方程;

(2)若直線與曲線交于,兩點,且曲線上存在兩點關(guān)于直線對稱,求實數(shù)的取值范圍及的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,是邊長為2的等邊三角形,,,.

1)證明:平面平面

2,分別是,的中點,是線段上的動點,若二面角的平面角的大小為,試確定點的位置.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若是函數(shù)的極值點,求的極小值;

2)若對任意的實數(shù)a,函數(shù)上總有零點,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】科赫曲線是一種外形像雪花的幾何曲線,一段科赫曲線可以通過下列操作步驟構(gòu)造得到,任畫一條線段,然后把它均分成三等分,以中間一段為邊向外作正三角形,并把中間一段去掉,這樣,原來的一條線段就變成了4條小線段構(gòu)成的折線,稱為“一次構(gòu)造”;用同樣的方法把每條小線段重復上述步驟,得到16條更小的線段構(gòu)成的折線,稱為“二次構(gòu)造”,…,如此進行“次構(gòu)造”,就可以得到一條科赫曲線.若要在構(gòu)造過程中使得到的折線的長度達到初始線段的1000倍,則至少需要通過構(gòu)造的次數(shù)是( .(取

A.16B.17C.24D.25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,側(cè)面是邊長為2的等邊三角形且垂直于底面,,的中點.

1)求證:直線平面;

2)點在棱上,且二面角的余弦值為,求直線與底面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,其導函數(shù)為.

1)討論函數(shù)的單調(diào)性;

2)若,關(guān)于的不等式恒成立,求實數(shù)的取值范圍;

3)若函數(shù)有兩個零點,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩點分別在軸和軸上運動,且,若動點滿足.

1)求出動點的軌跡的標準方程;

2)設動直線與曲線有且僅有一個公共點,與圓相交于兩點(兩點均不在坐標軸上),求直線的斜率之積.

查看答案和解析>>

同步練習冊答案