如圖,在平面直角坐標(biāo)系
中,以
軸為始邊,兩個(gè)銳角
,
的終邊分別與單位圓相交于A,B 兩點(diǎn).
![]()
(Ⅰ)若
,
,求
的值;
(Ⅱ)若角
的終邊與單位圓交于
點(diǎn),設(shè)角
的正弦線分別為
,試問:以
作為三邊的長能否構(gòu)成一個(gè)三角形?若能,請(qǐng)加以證明;若不能,請(qǐng)說明理由.
(Ⅰ)
(Ⅱ)以
作為三邊的長能構(gòu)成一個(gè)三角形.
【解析】
試題分析:(Ⅰ)∵0<α<
, tanα=
,∴cosα=
,sinα=
.
又∵0<β<
,sinβ=
,∴0<2β<π,cos2β=1-2sin2β=
,sin2β=
=
.
于是cos(α+2β)=cosαcos2β-sinαsin2β=
×
-
×
=
.
由已知條件知0<α+2β<
π,∴α+2β=
.
6分
(Ⅱ)解:以
作為三邊的長能構(gòu)成一個(gè)三角形,證明如下:
∵
,∴
∴
,
,![]()
∵
,所以
,
,于是有:
①
8分
又∵
,∴
,于是有:
②
同理:
③
由①②③可知,以
作為三邊的長能構(gòu)成一個(gè)三角形. 12分
考點(diǎn):同角間的三角函數(shù)關(guān)系及兩角和的余弦公式
點(diǎn)評(píng):第一問涉及到基本公式有![]()
![]()
,求角的大小常首先求角的某一三角函數(shù)值,結(jié)合角的范圍即可求出;第二問判定能否構(gòu)成三角形即判定三邊長是否有任意兩邊之和大于第三邊,確定不等式關(guān)系主要借助于正余弦函數(shù)的有解性
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| OP |
| OA |
| OB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| A、偶函數(shù) | B、奇函數(shù) | C、不是奇函數(shù),也不是偶函數(shù) | D、奇偶性與k有關(guān) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| 1 |
| 6 |
| 1 |
| 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
![]()
試問:是否存在定點(diǎn)E、F,使|ME|、|MB|、|MF|成等差數(shù)列?若存在,求出E、F的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com