【題目】如圖,GH是東西方向的公路北側(cè)的邊緣線,某公司準(zhǔn)備在GH上的一點(diǎn)B的正北方向的A處建設(shè)一倉(cāng)庫(kù),設(shè)
,并在公路北側(cè)建造邊長(zhǎng)為
的正方形無(wú)頂中轉(zhuǎn)站CDEF(其中EF在GH上),現(xiàn)從倉(cāng)庫(kù)A向GH和中轉(zhuǎn)站分別修兩條道路AB,AC,已知AB=AC+1,且
.
(1)求
關(guān)于
的函數(shù)解析式,并求出定義域;
(2)如果中轉(zhuǎn)站四堵圍墻造價(jià)為10萬(wàn)元/km,兩條道路造價(jià)為30萬(wàn)元/km,問(wèn):
取何值時(shí),該公司建設(shè)中轉(zhuǎn)站圍墻和兩條道路總造價(jià)M最低.
![]()
【答案】(1)函數(shù)
,定義域是
(2)
【解析】試題分析:
(1)利用題意結(jié)合余弦定理可得函數(shù)的解析式
,其定義域是
.
(2)結(jié)合(1)的結(jié)論求得利潤(rùn)函數(shù),由均值不等式的結(jié)論即可求得當(dāng)
km時(shí),公司建中轉(zhuǎn)站圍墻和兩條道路最低總造價(jià)
為490萬(wàn)元.
試題解析:
(1)在
中,
,所以
.
在
中,
,
由余弦定理,得
,
即
,
所以
.
由
, 得
. 又因?yàn)?/span>
,所以
.
所以函數(shù)
的定義域是
.
(2)![]()
.
因?yàn)?/span>
(![]()
![]()
即
.
令
則
. 于是
,
由基本不等式得
,
當(dāng)且僅當(dāng)
,即
時(shí)取等號(hào).
答:當(dāng)
km時(shí),公司建中轉(zhuǎn)站圍墻和兩條道路最低總造價(jià)
為490萬(wàn)元.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方體
的棱長(zhǎng)為1,
分別是棱
,
的中點(diǎn),過(guò)直線
的平面分別與棱
、
交于
,設(shè)
,
,給出以下四個(gè)命題:
①四邊形
為平行四邊形;
②若四邊形
面積
,
,則
有最小值;
③若四棱錐
的體積![]()
,
,則
為常函數(shù);
④若多面體
的體積
,
,則
為單調(diào)函數(shù).
其中假命題為( )
A.① ③ B.② C.③④ D.④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某投資商到一開(kāi)發(fā)區(qū)投資72萬(wàn)元建起一座蔬菜加工廠,第一年共支出12萬(wàn)元,以后每年支出增加4萬(wàn)元,從第一年起每年的蔬菜銷售收入均為50萬(wàn)元,設(shè)
表示前
年的純利潤(rùn)總和(
=前
年的總收入
前
年的總支出
投資額).
(1)該廠從第幾年開(kāi)始盈利?
(2)若干年后,投資商為開(kāi)發(fā)新項(xiàng)目,對(duì)該廠有兩種處理方案:
① 當(dāng)年平均利潤(rùn)達(dá)到最大時(shí),以48萬(wàn)元出售該廠;
② 當(dāng)純利潤(rùn)總和達(dá)到最大時(shí),以16萬(wàn)元出售該廠,
問(wèn)哪種方案更合算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)
的對(duì)稱軸為
,
.
(1)求函數(shù)
的最小值及取得最小值時(shí)
的值;
(2)試確定
的取值范圍,使
至少有一個(gè)實(shí)根;
(3)若
,存在實(shí)數(shù)
,對(duì)任意
,使
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)
的對(duì)稱軸為
,
.
(1)求函數(shù)
的最小值及取得最小值時(shí)
的值;
(2)試確定
的取值范圍,使
至少有一個(gè)實(shí)根;
(3)當(dāng)
時(shí),
,對(duì)任意
有
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】水培植物需要一種植物專用營(yíng)養(yǎng)液.已知每投放
(
且
)個(gè)單位的營(yíng)養(yǎng)液,它在水中釋放的濃度
(克/升)隨著時(shí)間
(天)變化的函數(shù)關(guān)系式近似為
,其中
,若多次投放,則某一時(shí)刻水中的營(yíng)養(yǎng)液濃度為每次投放的營(yíng)養(yǎng)液在相應(yīng)時(shí)刻所釋放的濃度之和,根據(jù)經(jīng)驗(yàn),當(dāng)水中營(yíng)養(yǎng)液的濃度不低于4(克/升)時(shí),它才能有效.
(1)若只投放一次4個(gè)單位的營(yíng)養(yǎng)液,則有效時(shí)間可能達(dá)幾天?
(2)若先投放2個(gè)單位的營(yíng)養(yǎng)液,3天后投放
個(gè)單位的營(yíng)養(yǎng)液.要使接下來(lái)的2天中,營(yíng)養(yǎng)液能夠持續(xù)有效,試求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐
中,底面
是菱形,
,側(cè)面
是邊長(zhǎng)為2的等邊三角形,點(diǎn)
是
的中點(diǎn),且平面
平面
.
![]()
(I)求異面直線
與
所成角的余弦值;
(II)若點(diǎn)
在線段
上移動(dòng),是否存在點(diǎn)
使平面
與平面
所成的角為
?若存在,指出點(diǎn)
的位置,否則說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)俄羅斯新羅西斯克2015年5月17日電 記者吳敏、鄭文達(dá)報(bào)道:當(dāng)?shù)貢r(shí)間17日,參加中俄“海上聯(lián)合-2015(Ⅰ)”軍事演習(xí)的9艘艦艇抵達(dá)地中海預(yù)定海域,混編組成海上聯(lián)合集群.接到命令后我軍在港口M要將一件重要物品用小艇送到一艘正在航行的俄軍輪船上,在小艇出發(fā)時(shí),輪船位于港口M北偏西30°且與該港口相距20海里的A處,并正以30海里/小時(shí)的航行速度沿正東方向勻速行駛.假設(shè)該小艇沿直線方向以v海里/小時(shí)的航行速度勻速行駛,經(jīng)過(guò)t小時(shí)與輪船相遇.
(1)若希望相遇時(shí)小艇的航行距離最小,則小艇航行速度的大小應(yīng)為多少?
(2)為保證小艇在30分鐘內(nèi)(含30分鐘)能與輪船相遇,試確定小艇航行速度的最小值并說(shuō)明你的推理過(guò)程;
(3)是否存在v,使得小艇以v海里/小時(shí)的航行速度行駛,總能有兩種不同的航行方向與輪船相遇?若存在,試確定v的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了
月
日至
月
日的每天晝夜溫差與實(shí)驗(yàn)室每天每
顆種子中的發(fā)芽數(shù),得到如下數(shù)據(jù):
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫度x(℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y(顆) | 23 | 25 | 30 | 26 | 16 |
設(shè)農(nóng)科所確定的研究方案是:先從這
組數(shù)據(jù)中選取
組,用剩下的
組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的
組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的
組數(shù)據(jù)恰好是不相鄰
天數(shù)據(jù)的概率;
(2)若選取的是
月
日與
月
日的兩組數(shù)據(jù),請(qǐng)根據(jù)
月
日與
月
日的數(shù)據(jù),求
關(guān)于
的線性回歸方程
;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)
顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(2)中所得的線性回歸方程是否可靠?
(注:
)
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com