【題目】閱讀如圖的程序框圖,若運(yùn)行此程序,則輸出S的值為 . ![]()
【答案】![]()
【解析】解:由已知中的程序框圖可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計算 并輸出變量S=sin
+sin
+sinπ+…+sin
+sin
的值,
∵sin
的值以6為周期呈周期性變化,且一個周期內(nèi)的值的和為0,且2017÷6=336…1,
∴S=sin
+sin
+sinπ+…+sin
+sin
=336×0+sin
=
.
所以答案是:
.
【考點(diǎn)精析】本題主要考查了程序框圖的相關(guān)知識點(diǎn),需要掌握程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明才能正確解答此題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分
分)已知圓
有以下性質(zhì):
①過圓
上一點(diǎn)
的圓的切線方程是
.
②若
為圓
外一點(diǎn),過
作圓
的兩條切線,切點(diǎn)分別為
,則直線
的方程為
.
③若不在坐標(biāo)軸上的點(diǎn)
為圓
外一點(diǎn),過
作圓
的兩條切線,切點(diǎn)分別為
,則
垂直
,即
,且
平分線段
.
(1)類比上述有關(guān)結(jié)論,猜想過橢圓
上一點(diǎn)
的切線方程(不要求證明);
(2)過橢圓
外一點(diǎn)
作兩直線,與橢圓相切于
兩點(diǎn),求過
兩點(diǎn)的直線方程;
(3)若過橢圓
外一點(diǎn)
(
不在坐標(biāo)軸上)作兩直線,與橢圓相切于
兩點(diǎn),求證:
為定值,且
平分線段
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若曲線
在
處的切線過點(diǎn)
.
① 求實數(shù)
的值;
② 設(shè)函數(shù)
,當(dāng)
時,試比較
與
的大小;
(2)若函數(shù)
有兩個極值點(diǎn)
,
(
),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,已知點(diǎn)
,
,
.
(1)求以線段
為鄰邊的平行四邊形的另一頂點(diǎn)
的坐標(biāo);
(2)求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:如果函數(shù)y=f(x)在定義域內(nèi)給定區(qū)間[a,b]上存在x0(a<x0<b),滿足f(x0)=
,則稱函數(shù)y=f(x)是[a,b]上的“平均值函數(shù)”,x0而是它的一個均值點(diǎn). 例如y=|x|是[﹣2,2]上的“平均值函數(shù)”,0就是它的均值點(diǎn).給出以下命題:
①函數(shù)f(x)=sinx﹣1是[﹣π,π]上的“平均值函數(shù)”;
②若y=f(x)是[a,b]上的“平均值函數(shù)”,則它的均值點(diǎn)x0≤
;
③若函數(shù)f(x)=x2+mx﹣1是[﹣1,1]上的“平均值函數(shù)”,則實數(shù)m∈(﹣2,0);
④若f(x)=lnx是區(qū)間[a,b](b>a≥1)上的“平均值函數(shù)”,x0是它的一個均值點(diǎn),則lnx0<
.
其中的真命題有(寫出所有真命題的序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,已知曲線
在點(diǎn)
處的切線與直線
平行
(Ⅰ)求
的值;
(Ⅱ)是否存在自然數(shù)
,使得方程
在
內(nèi)存在唯一的根?如果存在,求出
;如果不存在,請說明理由。
(Ⅲ)設(shè)函數(shù)
(
表示
中的較小者),求
的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
的圓心在
軸上,點(diǎn)
是圓
的上任一點(diǎn),且當(dāng)點(diǎn)
的坐標(biāo)為
時,
到直線
距離最大.
(1)求直線
被圓
截得的弦長;
(2)已知
,經(jīng)過原點(diǎn),且斜率為
的直線
與圓
交于
,
兩點(diǎn).
(Ⅰ)求證:
為定值;
(Ⅱ)若
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
,若|f(x)|≥ax,則a的取值范圍是( )
A.(﹣∞,0]
B.(﹣∞,1]
C.[﹣2,1]
D.[﹣2,0]
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com