P為橢圓
+
=1上任意一點,F1、F2為左、右焦點,如圖所示.
(1)若PF1的中點為M,求證:|MO|=5-
|PF1|;
(2)若∠F1PF2=60°,求|PF1|·|PF2|之值;
(3)橢圓上是否存在點P,使
·
=0,若存在,求出P點的坐標, 若不存在,試說明理由![]()
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分15分)已知橢圓
經(jīng)過點
,其離心率為
.
(1) 求橢圓
的方程;
(2)設(shè)直線
與橢圓
相交于
兩點,以線段
為鄰邊作平行四邊形
,其中頂點
在橢圓
上,
為坐標原點.求
到直線
的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓E:
(a,b>0)過M(2,
) ,N(
,1)兩點,O為坐標原點,
(1)求橢圓E的方程;
(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且
?若存在,寫出該圓的方程,若不存在說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心在原點,焦點在x軸上,它的一個頂點B恰好是拋物線
的焦點,
離心率等于
.直線
與橢圓C交于
兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ) 橢圓C的右焦點
是否可以為
的垂心?若可以,求出直線
的方程;
若不可以,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的方程為
,點
分別為其左、右頂點,點
分別為其左、右焦點,以點
為圓心,
為半徑作圓
;以點
為圓心,
為半徑作圓
;若直線
被圓
和圓
截得的弦長之比為
;
(1)求橢圓
的離心率;
(2)己知
,問是否存在點
,使得過
點有無數(shù)條直線被圓
和圓
截得的弦長之比為
;若存在,請求出所有的
點坐標;若不存在,請說明理由.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知:橢圓
的左右焦點為
;直線
經(jīng)過
交橢圓于
兩點.
(1)求證:
的周長為定值.
(2)求
的面積的最大值? ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)設(shè)
、
分別是橢圓
,![]()
的左、右焦點,
是該橢圓上一個動點,且
,
。
、求橢圓
的方程;
、求出以點
為中點的弦所在的直線方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分) 雙曲線的兩條漸近線的方程為y=±x,且經(jīng)過點(3,-2).(1)求雙曲線的方程;(2)過雙曲線的右焦點F且傾斜角為60°的直線交雙曲線于A、B兩點,求|AB|.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com