【題目】已知關(guān)于
的一元二次方程
有實數(shù)根.
(1)求實數(shù)m的取值范圍;
(2)當(dāng)m=2時,方程的根為
,求代數(shù)式
的值.
【答案】(1)
;(2)1.
【解析】
(1)根據(jù)
,解不等式即可;
(2)將m=2代入原方程可得:x2+3x+1=0,計算兩根和與兩根積,化簡所求式子,可得結(jié)論.
(1)△=![]()
∵原方程有實根,∴△=![]()
解得![]()
(2)當(dāng)m=2時,方程為x2+3x+1=0,
∴x1+x2=-3,x1x2=1,
∵方程的根為x1,x2,
∴x12+3x1+1=0,x22+3x2+1=0,
∴(x12+2x1)(x22+4x2+2)
=(x12+2x1+x1-x1)(x22+3x2+x2+2)
=(-1-x1)(-1+x2+2)
=(-1-x1)(x2+1)
=-x2-x1x2-1-x1
=-x2-x1-2
=3-2
=1.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】祖暅是南北朝時代的偉大科學(xué)家,公元五世紀末提出體積計算原理,即祖暅原理:“冪勢既同,則積不容異”.意思是:夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平面的任何一個平面所截,如果截面面積恒相等,那么這兩個幾何體的體積一定相等.設(shè)A,B為兩個同高的幾何體,
A,B的體積不相等,
A,B在等高處的截面積不恒相等.根據(jù)祖暅原理可知,p是q的( )
A. 充分不必要條件 B. 必要不充分條件
C. 充要條件 D. 既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系xOy中,直線l的參數(shù)方程為
(t為參數(shù)),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=2
sin θ.
(1)求圓C的直角坐標方程;
(2)設(shè)圓C與直線l交于點A、B,若點P的坐標為(3,
),求|PA|+|PB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:
,半徑為4的圓C與直線l相切,圓心C在x軸上且在直線l的右上方.
(Ⅰ)求圓C的方程;
(Ⅱ)過點M (2,0)的直線與圓C交于A,B兩點(A在x軸上方),問在x軸正半軸上是否存在定點N,使得x軸平分∠ANB?若存在,請求出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是()
A. 銳角是第一象限的角,所以第一象限的角都是銳角;
B. 如果向量
,則
;
C. 在
中,記
,
,則向量
與
可以作為平面ABC內(nèi)的一組基底;
D. 若
,
都是單位向量,則
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某印刷廠為了研究單冊書籍的成本
(單位:元)與印刷冊數(shù)
(單位:千冊)之間的關(guān)系,在印制某種書籍時進行了統(tǒng)計,相關(guān)數(shù)據(jù)見下表:
印刷冊數(shù) |
|
|
|
|
|
單冊成本 |
|
|
|
|
|
根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到兩個回歸方程,方程甲:
,方程乙:
.
(1)為了評價兩種模型的擬合效果,完成以下任務(wù).
①完成下表(計算結(jié)果精確到
);
印刷冊數(shù) |
|
|
|
|
| |
單冊成本 |
|
|
|
|
| |
模型甲 | 估計值 |
|
|
| ||
殘差 |
|
|
| |||
模型乙 | 估計值 |
|
|
| ||
殘差 |
|
|
| |||
②分別計算模型甲與模型乙的殘差平方和,并通過比較,判斷哪個模型擬合效果更好.
(2)該書上市之后,受到廣大讀者熱烈歡迎,不久便全部售罄,于是印刷廠決定進行二次印刷,根據(jù)市場調(diào)查,新需求量為
千冊,若印刷廠以每冊
元的價格將書籍出售給訂貨商,求印刷廠二次印刷
千冊獲得的利潤?(按(1)中擬合效果較好的模型計算印刷單冊書的成本).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列
的前
項和為
,且
,
.
(1)求數(shù)列
的通項公式;
(2)已知
,記
(
且
),是否存在這樣的常數(shù)
,使得數(shù)列
是常數(shù)列,若存在,求出
的值;若不存在,請說明理由;
(3)若數(shù)列
,對于任意的正整數(shù)
,均有
成立,求證:數(shù)列
是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了變廢為寶,節(jié)約資源,新上了一個從生活垃圾中提煉生物柴油的項目.經(jīng)測算該項目月處理成本
(元)與月處理量
(噸)之間的函數(shù)關(guān)系可以近似地表示為:
,且每處理一噸生活垃圾,可得到能利用的生物柴油價值為
元,若該項目不獲利,政府將給予補貼.
(1)當(dāng)
時,判斷該項目能否獲利?如果獲利,求出最大利潤;如果不獲利,則政府每月至少需要補貼多少元才能使該項目不虧損?
(2)該項目每月處理量為多少噸時,才能使每噸的平均處理成本最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱柱
的底面
是菱形,
平面
,
,
,
,點
為
的中點.
![]()
(1)求證:直線
平面
;
(2)求證:
平面
;
(3)求直線
與平面
所成的角的正切值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com