(本小題滿分12分)
設(shè)
,點P(
,0)是函數(shù)
的圖象的一個公共點,兩函數(shù)的圖象在點P處有相同的切線.
(1)用
表示a,b,c;
(2)若函數(shù)
在(-1,3)上單調(diào)遞減,求
的取值范圍.
(1)
,
,
(2)![]()
解析試題分析:(I)因為函數(shù)
,
的圖象都過點(
,0),所以
,
即
.因為
所以
.
---2分
又因為
,
在點(
,0)處有相同的切線,所以![]()
而
--------4分
將
代入上式得
因此
故
,
,
---6分
(II)
.---7分
當(dāng)
時,函數(shù)
單調(diào)遞減.
由
,若
;若
-------9分
由題意,函數(shù)
在(-1,3)上單調(diào)遞減,則
所以
---11分
所以
的取值范圍為
----12分
考點:導(dǎo)數(shù)的幾何意義;利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性。
點評:利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,實質(zhì)上就是求導(dǎo)數(shù)>0或?qū)?shù)<0的解集,這樣問題就轉(zhuǎn)化為了解不等式,尤其是解含參不等式更為常見。此題是導(dǎo)數(shù)中的典型題型,我們要熟練掌握。
科目:高中數(shù)學(xué) 來源: 題型:解答題
文科設(shè)函數(shù)
。(Ⅰ)若函數(shù)
在
處與直線
相切,①求實數(shù)
,b的值;②求函數(shù)
上的最大值;(Ⅱ)當(dāng)
時,若不等式
對所有的
都成立,求實數(shù)m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知f(x)=
(x∈R)在區(qū)間[-1,1]上是增函數(shù).
(Ⅰ)求實數(shù)a的值組成的集合A;
(Ⅱ)設(shè)關(guān)于x的方程f(x)=
的兩個非零實根為x1、x2.試問:是否存在實數(shù)m,使得不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分為12分)
已知函數(shù)
的圖像過坐標(biāo)原點
,且在點
處的切線的斜率是
.
(1)求實數(shù)
的值;
(2)求
在區(qū)間
上的最大值;
(3)對任意給定的正實數(shù)
,曲線
上是否存在兩點
,使得
是以
為直角頂點的直角三角形,且此三角形斜邊的中點在軸上?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分l2分)
已知函數(shù)![]()
(1)若
,求函數(shù)
的極小值;
(2)設(shè)函數(shù)
,試問:在定義域內(nèi)是否存在三個不同的自變量
使得
的值相等,若存在,請求出
的范圍,若不存在,請說明理由?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)f(x)=ln+mx2(m∈R)
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若A,B是函數(shù)f(x)圖象上不同的兩點,且直線AB的斜率恒大于1,求實數(shù)m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
設(shè)點P在曲線
上,從原點向A(2,4)移動,如果直線OP,曲線
及直線x=2所圍成的面積分別記為
、
。![]()
(Ⅰ)當(dāng)
時,求點P的坐標(biāo);
(Ⅱ)當(dāng)
有最小值時,求點P的坐標(biāo)和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分16分)
已知函數(shù)
,其中
.
(1)當(dāng)
時,求函數(shù)
在
處的切線方程;
(2)若函數(shù)
在區(qū)間(1,2)上不是單調(diào)函數(shù),試求
的取值范圍;
(3)已知
,如果存在
,使得函數(shù)![]()
在
處取得最小值,試求
的最大值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com