| A. | 已知x,y∈R,則$\left\{\begin{array}{l}{x>1}\\{y>2}\end{array}\right.$是$\left\{\begin{array}{l}{x+y>3}\\{xy>2}\end{array}\right.$的充要條件 | |
| B. | 當0<x≤2時,函數(shù)y=x-$\frac{1}{x}$無最大值 | |
| C. | ?a,b∈R,$\frac{a+b}{2}≥\sqrt{ab}$ | |
| D. | ?x∈R,sinx+cosx=$\frac{7}{5}$ |
分析 A利用充分條件和必要條件的定義進行判斷
B利用函數(shù)的單調(diào)性進行判斷
C根據(jù)基本不等式成立的條件進行判斷
D根據(jù)三角函數(shù)的有界性進行判斷
解答 解:A.當x=4,y=1,滿足$\left\{\begin{array}{l}{x+y>3}\\{xy>2}\end{array}\right.$,但$\left\{\begin{array}{l}{x>1}\\{y>2}\end{array}\right.$不成立,即$\left\{\begin{array}{l}{x>1}\\{y>2}\end{array}\right.$不是$\left\{\begin{array}{l}{x+y>3}\\{xy>2}\end{array}\right.$的充要條件,故A錯誤,
B.當0<x≤2時,函數(shù)y=x-$\frac{1}{x}$為增函數(shù),則當x=2時,函數(shù)取得最大值,故B錯誤,
C.當a,b<0時,$\frac{a+b}{2}≥\sqrt{ab}$不成立,故C錯誤,
D.sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$)∈[-$\sqrt{2}$,$\sqrt{2}$],
∵$\frac{7}{5}$∈[-$\sqrt{2}$,$\sqrt{2}$],∴?x∈R,sinx+cosx=$\frac{7}{5}$,故D正確,
故選:D
點評 本題主要考查命題的真假判斷,涉及充分條件和必要條件,函數(shù)單調(diào)性,基本不等式以及三角函數(shù)的真假判斷,知識點較多,綜合性較強,但難度不大.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 4 | B. | 2$\sqrt{3}$ | C. | 3 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 任意三點確定一個平面 | |
| B. | 任意四點確定一個平面 | |
| C. | 三條平行直線最多確定一個平面 | |
| D. | 正方體ABCD-A1B1C1D1中,AB與CC1異面 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | k≤-$\frac{4}{3}$或k≥-$\frac{3}{4}$ | B. | k≤$\frac{3}{4}$或k≥$\frac{4}{3}$ | C. | -$\frac{4}{3}$≤k≤-$\frac{3}{4}$ | D. | $\frac{3}{4}$≤k≤$\frac{4}{3}$ |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com