【題目】高一(1)班參加校生物競(jìng)賽學(xué)生的成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見(jiàn)部分如下,據(jù)此解答如下問(wèn)題:
![]()
(1)求高一(1)班參加校生物競(jìng)賽的人數(shù)及分?jǐn)?shù)在[80,90)之間的頻數(shù),并計(jì)算頻率分布直方圖中[80,90)間的矩形的高;
(2)若要從分?jǐn)?shù)在[80,100]之間的學(xué)生中任選2人進(jìn)行某項(xiàng)研究,求至少有1人分?jǐn)?shù)在[90,100]之間的概率.
【答案】(1)0. 016;(2)
【解析】試題分析:(1)根據(jù)頻率等于頻數(shù)除以總數(shù),可得到參加校生物競(jìng)賽的人數(shù),再根據(jù)分?jǐn)?shù)在[80,90)之間的頻率求頻數(shù),根據(jù)矩形高等于對(duì)應(yīng)頻率除以組距得高(2)先根據(jù)枚舉法列出所有基本事件,再計(jì)數(shù)至少有1人分?jǐn)?shù)在[90,100]之間基本試卷數(shù),最后根據(jù)古典概型概率公式求概率
試題解析: (1)因?yàn)榉謹(jǐn)?shù)在[50,60)之間的頻數(shù)為2,頻率為0. 008×10=0. 08,所以高一(1)班參加校生物競(jìng)賽的人數(shù)為
=25.
分?jǐn)?shù)在[80,90)之間的頻數(shù)為25-2-7-10-2=4,頻率為
=0. 16,
所以頻率分布直方圖中[80,90)間的矩形的高為
=0. 016.
(2)設(shè)“至少有1人分?jǐn)?shù)在[90,100]之間”為事件A,將[80,90)之間的4人編號(hào)為1、2、3、4,[90,100]之間的2人編號(hào)為5、6.
在[80,100]之間任取2人的基本事件有:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15個(gè).其中,至少有1人分?jǐn)?shù)在[90,100]之間的基本事件有9個(gè),
根據(jù)古典概型概率的計(jì)算公式,得P(A)=
=
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱臺(tái)ABC﹣DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.![]()
(1)求證:BF⊥平面ACFD;
(2)求直線BD與平面ACFD所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,若集合
含有
個(gè)元素,則實(shí)數(shù)
的取值范圍是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下是新兵訓(xùn)練時(shí),某炮兵連8周中炮彈對(duì)同一目標(biāo)的命中情況的柱狀圖: ![]()
(1)計(jì)算該炮兵連這8周中總的命中頻率p0 , 并確定第幾周的命中頻率最高;
(2)以(1)中的p0作為該炮兵連炮兵甲對(duì)同一目標(biāo)的命中率,若每次發(fā)射相互獨(dú)立,且炮兵甲發(fā)射3次,記命中的次數(shù)為X,求X的數(shù)學(xué)期望;
(3)以(1)中的p0作為該炮兵連炮兵對(duì)同一目標(biāo)的命中率,試問(wèn)至少要用多少枚這樣的炮彈同時(shí)對(duì)該目標(biāo)發(fā)射一次,才能使目標(biāo)被擊中的概率超過(guò)0.99?(取lg0.4=﹣0.398)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在高為2的梯形
中,
,
,
,過(guò)
、
分別作
,
,垂足分別為
、
。已知
,將梯形
沿
、
同側(cè)折起,得空間幾何體
,如圖2。
![]()
(1)若
,證明:
;
(2)若
,證明:
;
(3)在(1),(2)的條件下,求三棱錐
的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的中心在原點(diǎn),焦點(diǎn)
、
在
軸上,離心率為
,在橢圓
上有一動(dòng)點(diǎn)
與
、
的距離之和為4,
(Ⅰ) 求橢圓E的方程;
(Ⅱ) 過(guò)
、
作一個(gè)平行四邊形,使頂點(diǎn)
、
、
、
都在橢圓
上,如圖所示.判斷四邊形
能否為菱形,并說(shuō)明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】共享單車給市民出行帶來(lái)了諸多便利,某公司購(gòu)買了一批單車投放到某地給市民使用,
據(jù)市場(chǎng)分析,每輛單車的營(yíng)運(yùn)累計(jì)利潤(rùn)y(單位:元)與營(yíng)運(yùn)天數(shù)x
滿足函數(shù)關(guān)系
式
.
(1)要使?fàn)I運(yùn)累計(jì)利潤(rùn)高于800元,求營(yíng)運(yùn)天數(shù)的取值范圍;
(2)每輛單車營(yíng)運(yùn)多少天時(shí),才能使每天的平均營(yíng)運(yùn)利潤(rùn)
的值最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,已知CA=1,CB=2,∠ACB=60°.
![]()
(1)求|
|;
(2)已知點(diǎn)D是AB上一點(diǎn),滿足
=λ
,點(diǎn)E是邊CB上一點(diǎn),滿足
=λ
.
①當(dāng)λ=
時(shí),求![]()
;
②是否存在非零實(shí)數(shù)λ,使得
⊥
?若存在,求出的λ值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=xlnx﹣
x2(a∈R).
(1)若x>0,恒有f(x)≤x成立,求實(shí)數(shù)a的取值范圍;
(2)若a=0,求f(x)在區(qū)間[t,t+2](t>0)上的最小值;
(3)若函數(shù)g(x)=f(x)﹣x有兩個(gè)極值點(diǎn)x1 , x2 , 求證:
+
>2ae.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com