(本小題滿分12分)在直三棱柱(側(cè)棱垂直底面)
中,
,
,且異面直線
與
所成的角等于
.
![]()
(Ⅰ)求棱柱的高;
(Ⅱ)求
與平面
所成的角的大小.
(1)1(2)![]()
【解析】
試題分析:解:解:(Ⅰ)由三棱柱
是直三棱柱可知,
即為其高.
如圖,因?yàn)?img
src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013040408470398437556/SYS201304040847533750383372_DA.files/image004.png">∥
,所以
是異面直線
與
所成的角或其補(bǔ)角.
連接
,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013040408470398437556/SYS201304040847533750383372_DA.files/image009.png">,所以
.
在Rt△
中,由
,
,可得
.……………
3分
又異面直線
與
所成的角為
,所以
,即△
為正三角形.
于是
.
在Rt△
中,由
,得
,即棱柱的高為
.……6分
(Ⅱ)連結(jié)
,設(shè)
,由(Ⅰ)知,
,
![]()
所以矩形
是正方形,所以
.
又由
得
,于是得
平面
.
故
就是
與平面
所成的角.
………………………… 9分
在Rt△
中,由
,
,
![]()
可得
.
在Rt△
中,由
,
,
得
,故
.
因此
與平面
所成的角
.
………………………………………… 12分
考點(diǎn):本試題考查了棱柱中距離和角的求解。
點(diǎn)評(píng):對(duì)于幾何體中的高的求解,可以借助于勾股定理來(lái)得到,同時(shí)對(duì)于線面角的求解,一般分為三步驟:先作,二證,三解。這也是所有求角的一般步驟,屬于中檔題。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的
、
、
.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:
(I)他們選擇的項(xiàng)目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
![]()
(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分12分)
某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤(rùn)與投資單位是萬(wàn)元)
(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫(xiě)出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬(wàn)元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問(wèn):怎樣分配這10萬(wàn)元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬(wàn)元.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com