設(shè)
(Ⅰ)當(dāng)
,解不等式
;
(Ⅱ)當(dāng)
時(shí),若![]()
,使得不等式
成立,求實(shí)數(shù)
的取值范圍.
(1)
;(2)
.
【解析】
試題分析:本題考查絕對(duì)值不等式的解法和不等式恒成立問(wèn)題,考查轉(zhuǎn)化思想和分類(lèi)討論思想.第一問(wèn),先將
代入,解絕對(duì)值不等式;第二問(wèn),先將
代入,得出
解析式,將已知條件轉(zhuǎn)化為求最小值問(wèn)題,將
去絕對(duì)值轉(zhuǎn)化為分段函數(shù),通過(guò)函數(shù)圖像,求出最小值,所以
,再解不等式即可.
試題解析:(I)
時(shí)原不等式等價(jià)于
即
,
所以解集為
. 5分
(II)當(dāng)
時(shí),
,令
,
由圖像知:當(dāng)
時(shí),
取得最小值
,由題意知:
,
所以實(shí)數(shù)
的取值范圍為
.
10分
考點(diǎn):1.解絕對(duì)值不等式;2.分段函數(shù)圖像;3.存在性問(wèn)題的解法.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆山西省晉商四校高二下學(xué)期文科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)橢圓
:
(
)的一個(gè)頂點(diǎn)為
,
,
分別是橢圓的左、右焦點(diǎn),離心率
,過(guò)橢圓右焦點(diǎn)
的直線(xiàn)
與橢圓
交于
,
兩點(diǎn).
(1)求橢圓
的方程;
(2)是否存在直線(xiàn)
,使得
,若存在,求出直線(xiàn)
的方程;若不存在,說(shuō)明理由;
【解析】本試題主要考查了橢圓的方程的求解,以及直線(xiàn)與橢圓的位置關(guān)系的運(yùn)用。(1)中橢圓的頂點(diǎn)為
,即
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714546570844292_ST.files/image015.png">,得到
,然后求解得到橢圓方程(2)中,對(duì)直線(xiàn)分為兩種情況討論,當(dāng)直線(xiàn)斜率存在時(shí),當(dāng)直線(xiàn)斜率不存在時(shí),聯(lián)立方程組,結(jié)合
得到結(jié)論。
解:(1)橢圓的頂點(diǎn)為
,即![]()
,解得
,
橢圓的標(biāo)準(zhǔn)方程為
--------4分
(2)由題可知,直線(xiàn)
與橢圓必相交.
①當(dāng)直線(xiàn)斜率不存在時(shí),經(jīng)檢驗(yàn)不合題意. --------5分
②當(dāng)直線(xiàn)斜率存在時(shí),設(shè)存在直線(xiàn)
為
,且
,
.
由
得
, ----------7分
,
,
![]()
=
所以
,
----------10分
故直線(xiàn)
的方程為
或
即
或![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com