【題目】已知函數(shù)
(1)若函數(shù)
在
上單調(diào)遞減,在
上單調(diào)遞增,求實(shí)數(shù)
的值;
(2)是否存在實(shí)數(shù)
,使得
在
上單調(diào)遞減,若存在,試求
的取值范圍;若不存在,請(qǐng)說(shuō)明理由;
(3)若
,當(dāng)
時(shí)不等式
有解,求實(shí)數(shù)
的取值范圍.
【答案】(1)
;(2)
;(3)
.
【解析】試題分析:(1)求導(dǎo)函數(shù),根據(jù)函數(shù)f(x)在(-
,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,可得x=1是方程f′(x)=0的根,從而可求實(shí)數(shù)a的值;(2)由題意得:f′(x)=3x2+2ax-2≤0在(-2,
)上恒成立,由此可實(shí)數(shù)a的取值范圍;(3)求導(dǎo)函數(shù),求導(dǎo)函數(shù)x∈(-1,2)時(shí),f(x)的最小值,欲使不等式f(x)<m有解,只需m≥[f(x)]min,從而可求實(shí)數(shù)m的取值范圍.
試題解析:
(1)
,
∵
在
上單調(diào)遞減,在
上單調(diào)遞增,
∴
是方程
的根,解得![]()
(2)由題意得:
在
上恒成立,
∴
∴![]()
(3)當(dāng)
時(shí),
,
由
得: ![]()
列表:
![]()
∴
時(shí),
的最小值為
,此時(shí)
,
欲使
有解,只需
,∴
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)盒子內(nèi)裝有8張卡片,每張卡片上面寫(xiě)著1個(gè)數(shù)字,這8個(gè)數(shù)字各不相同,且奇數(shù)有3個(gè),偶數(shù)有5個(gè).每張卡片被取出的概率相等.
(Ⅰ)如果從盒子中一次隨機(jī)取出2張卡片,并且將取出的2張卡片上的數(shù)字相加得到一個(gè)新數(shù),求所得新數(shù)是偶數(shù)的概率;
(Ⅱ)現(xiàn)從盒子中一次隨機(jī)取出1張卡片,每次取出的卡片都不放回盒子,若取出的卡片上寫(xiě)著的數(shù)是偶數(shù)則停止取出卡片,否則繼續(xù)取出卡片.設(shè)取出了
次才停止取出卡片,求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】4個(gè)男生,3個(gè)女生站成一排.(必須寫(xiě)出算式再算出結(jié)果才得分)
(Ⅰ)3個(gè)女生必須排在一起,有多少種不同的排法?
(Ⅱ)任何兩個(gè)女生彼此不相鄰,有多少種不同的排法?
(Ⅲ)甲乙二人之間恰好有三個(gè)人,有多少種不同的排法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
.
(1)求
在區(qū)間
(
)上的最小值
;
(2)當(dāng)
時(shí),討論方程
實(shí)數(shù)根的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
;
(1)若函數(shù)
在
上為增函數(shù),求正實(shí)數(shù)
的取值范圍;
(2)當(dāng)
時(shí),求函數(shù)
在
上的最值;
(3)當(dāng)
時(shí),對(duì)大于1的任意正整數(shù)
,試比較
與
的大小關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“雞兔同籠”問(wèn)題是我國(guó)古代著名的趣題之一.《孫子算經(jīng)》中就記載了這個(gè)有趣的問(wèn)題.書(shū)中這樣描述:今有雞兔同籠,上有三十五頭,下有九十四足,問(wèn)雞兔幾何?
試設(shè)計(jì)一個(gè)算法,輸入雞兔的總數(shù)量和雞兔的腳的總數(shù)量,分別輸出雞、兔的數(shù)量,寫(xiě)出程序語(yǔ)句.并畫(huà)出相應(yīng)的程序框圖.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,圓
、橢圓
均經(jīng)過(guò)點(diǎn)M
,圓
的圓心為
,橢圓
的兩焦點(diǎn)分別為
.
![]()
(Ⅰ)分別求圓
和橢圓
的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)
作直線
與圓
交于
、
兩點(diǎn),試探究
是否為定值?若是定值,求出該定值;若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線
,直線
與拋物線
相交于
兩點(diǎn),且當(dāng)傾斜角為
的直線
經(jīng)過(guò)拋物線
的焦點(diǎn)
時(shí),有
.
![]()
(1)求拋物線
的方程;
(2)已知圓
,是否存在傾斜角不為
的直線
,使得線段
被圓
截成三等分?若存在,求出直線
的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修
:坐標(biāo)系與參數(shù)方程選講.
在平面直角坐標(biāo)系
中,曲線
(
為參數(shù),實(shí)數(shù)
),曲線![]()
(
為參數(shù),實(shí)數(shù)
). 在以
為極點(diǎn),
軸的正半軸為極軸的極坐標(biāo)系中,射線
與
交于
兩點(diǎn),與
交于
兩點(diǎn). 當(dāng)
時(shí),
;當(dāng)
時(shí),
.
(1)求
的值; (2)求
的最大值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com