已知函數(shù)
。
(Ⅰ)若
在
是增函數(shù),求b的取值范圍;
(Ⅱ)若
在
時取得極值,且
時,
恒成立,求c的取值范圍.
(Ⅰ)
;(Ⅱ)
.
解析試題分析:(Ⅰ)由于增函數(shù)的導數(shù)應大于等于零,故先對函數(shù)求導并令其大于零,可得
科目:高中數(shù)學
來源:
題型:解答題
已知
科目:高中數(shù)學
來源:
題型:解答題
設函數(shù)
科目:高中數(shù)學
來源:
題型:解答題
預計某地區(qū)明年從年初開始的前
科目:高中數(shù)學
來源:
題型:解答題
已知函數(shù)
科目:高中數(shù)學
來源:
題型:解答題
已知函數(shù)f(x)=aex,g(x)=lnx-lna,其中a為常數(shù),e=2.718…,且函數(shù)y=f(x)和y=g(x)的圖像在它們與坐標軸交點處的切線互相平行.
科目:高中數(shù)學
來源:
題型:解答題
已知函數(shù)
國際學校優(yōu)選 - 練習冊列表 - 試題列表 湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
的取值范圍,注意在求導時需細心;(Ⅱ)由函數(shù)在
處取得極值可知,在
處函數(shù)導數(shù)為零,可求得
的值,要使
時,
恒成立,需要求出
在
中的最大值,只有最大值小于
,則
恒成立,故可求得
的范圍,這類題目就是要求出
在給定區(qū)間上的最值.
試題解析:(1)
,∵
在
是增函數(shù),
∴
恒成立,∴
,解得
.
∵
時,只有
時,
,∴b的取值范圍為
. 3分
(Ⅱ)由題意,
是方程
的一個根,設另一根為
,
則
∴
∴
, 5分
列表分析最值:![]()
![]()
![]()
![]()
![]()
1 ![]()
2 ![]()
+ 0 - 0 + ![]()
![]()
遞增 ![]()
![]()
初中畢業(yè)生學業(yè)水平鞏固與提高系列答案
安童教育中考模擬試卷系列答案
考必勝小學畢業(yè)升學考試試卷精選系列答案
精華版中考備戰(zhàn)策略系列答案
聚焦中考系列答案
新中考全真模擬8套卷系列答案
初中學業(yè)考試說明與指導系列答案
中考備戰(zhàn)策略系列答案
南京市中考指導書系列答案
中考考前模擬8套卷成功之路系列答案
![]()
(1)若
時,求函數(shù)
在點
處的切線方程;
(2)若函數(shù)
在
上是減函數(shù),求實數(shù)
的取值范圍;
(3)令
是否存在實數(shù)
,當
是自然對數(shù)的底)時,函數(shù)
的最小值是3,
若存在,求出
的值;若不存在,說明理由.
(其中
).
(1) 當
時,求函數(shù)
的單調(diào)區(qū)間和極值;
(2) 當
時,函數(shù)
在
上有且只有一個零點.
個月內(nèi),對某種商品的需求總量
(萬件)近似滿足:
N*,且
)
(1)寫出明年第
個月的需求量
(萬件)與月份
的函數(shù)關系式,并求出哪個月份的需求量超過
萬件;
(2)如果將該商品每月都投放到該地區(qū)
萬件(不包含積壓商品),要保證每月都滿足供應,
應至少為多少萬件?(積壓商品轉(zhuǎn)入下月繼續(xù)銷售)
.
(1)當
時,求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)當
時,不等式
恒成立,求實數(shù)
的取值范圍.
(Ⅲ)求證:
(
,e是自然對數(shù)的底數(shù)).
提示:![]()
(1)求常數(shù)a的值;(2)若存在x使不等式
>
成立,求實數(shù)m的取值范圍;
(3)對于函數(shù)y=f(x)和y=g(x)公共定義域內(nèi)的任意實數(shù)x0,我們把|f(x0)-g(x0)|的值稱為兩函數(shù)在x0處的偏差.求證:函數(shù)y=f(x)和y=g(x)在其公共定義域內(nèi)的所有偏差都大于2.
.
(1) 當
時,求函數(shù)
的單調(diào)區(qū)間;
(2) 當
時,函數(shù)
圖象上的點都在
所表示的平面區(qū)域內(nèi),求實數(shù)
的取值范圍.
版權聲明:本站所有文章,圖片來源于網(wǎng)絡,著作權及版權歸原作者所有,轉(zhuǎn)載無意侵犯版權,如有侵權,請作者速來函告知,我們將盡快處理,聯(lián)系qq:3310059649。
ICP備案序號: 滬ICP備07509807號-10 鄂公網(wǎng)安備42018502000812號