已知橢圓![]()
(
)的一個(gè)頂點(diǎn)為
,離心率為
,直線
與橢圓
交于不同的兩點(diǎn)
、
.(1) 求橢圓
的方程;(2) 當(dāng)
的面積為
時(shí),求
的值.
(1)
; (2)
.
解析試題分析:(1)易知橢圓的焦點(diǎn)在x軸上,因?yàn)闄E圓的一個(gè)頂點(diǎn)為
,所以a=2,又因?yàn)殡x心率為
,所以c=
,所以
,所以橢圓的方程為
。
(2)設(shè)
,聯(lián)立直線方程和橢圓方程![]()
點(diǎn)A到直線
的距離為
,
所以
,解得
。
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì);橢圓的標(biāo)準(zhǔn)方程;直線與橢圓的綜合應(yīng)用;點(diǎn)到直線的距離公式;弦長(zhǎng)公式。
點(diǎn)評(píng):本題主要考查橢圓方程的求法和弦長(zhǎng)的運(yùn)算,解題時(shí)要注意橢圓性質(zhì)的靈活運(yùn)用和弦長(zhǎng)公式的合理運(yùn)用。在求直線與圓錐曲線相交的弦長(zhǎng)時(shí)一般采用韋達(dá)定理設(shè)而不求的方法,在求解過(guò)程中一般采取步驟為:設(shè)點(diǎn)→聯(lián)立方程→消元→韋達(dá)定理→弦長(zhǎng)公式。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C:
=1(a>b>0)的離心率為
,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l與橢圓C交于A、B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線l的距離為
,求△AOB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分16分)
已知橢圓![]()
的離心率為
,一條準(zhǔn)線
.![]()
(1)求橢圓
的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),
是
上的點(diǎn),
為橢圓
的右焦點(diǎn),過(guò)點(diǎn)F作OM的垂線與以OM為直徑的圓
交于
兩點(diǎn).
①若
,求圓
的方程;
②若
是l上的動(dòng)點(diǎn),求證:點(diǎn)
在定圓上,并求該定圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸的正半軸上,直線x+y-1=0與拋物線相交于A、B兩點(diǎn),
且
。
(1) 求拋物線方程;
(2) 在x軸上是否存在一點(diǎn)C,使得三角形ABC是正三角形? 若存在,求出點(diǎn)C的坐標(biāo),若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
的中心為直角坐標(biāo)系
的原點(diǎn),焦點(diǎn)在
軸上,它的一個(gè)頂點(diǎn)到兩個(gè)焦點(diǎn)的距離分別是7和1
(1)求橢圓
的方程
(2)若
為橢圓
的動(dòng)點(diǎn),
為過(guò)
且垂直于
軸的直線上的點(diǎn),
(e為橢圓C的離心率),求點(diǎn)
的軌跡方程,并說(shuō)明軌跡是什么曲線?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線的頂點(diǎn)在原點(diǎn),它的準(zhǔn)線過(guò)雙曲線
的一個(gè)焦點(diǎn),并與雙曲線的實(shí)軸垂直,已知拋物線與雙曲線的交點(diǎn)為
.
(1)求拋物線的方程;
(2)求雙曲線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
:
的一個(gè)頂點(diǎn)為
,離心率為
.直線
與橢圓
交于不同的兩點(diǎn)M,N.
(Ⅰ)求橢圓
的方程;
(Ⅱ)當(dāng)△AMN得面積為
時(shí),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)![]()
過(guò)拋物線焦點(diǎn)垂直于對(duì)稱軸的弦叫做拋物線的通徑。如圖,已知拋物線
,過(guò)其焦點(diǎn)F的直線交拋物線于
、
兩點(diǎn)。過(guò)
、
作準(zhǔn)線的垂線,垂足分別為
、
.![]()
(1)求出拋物線的通徑,證明
和
都是定值,并求出這個(gè)定值;
(2)證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(滿分10分)(Ⅰ) 設(shè)橢圓方程
的左、右頂點(diǎn)分別為
,點(diǎn)M是橢圓上異于
的任意一點(diǎn),設(shè)直線
的斜率分別為
,求證
為定值并求出此定值;
(Ⅱ)設(shè)橢圓方程
的左、右頂點(diǎn)分別為
,點(diǎn)M是橢圓上異于
的任意一點(diǎn),設(shè)直線
的斜率分別為
,利用(Ⅰ)的結(jié)論直接寫出
的值。(不必寫出推理過(guò)程)
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com