欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

7.(文科班選做此題)已知a>0,命題p:?x≥1,x-$\frac{a}{x}$+2≥0恒成立,命題q:點(diǎn)P(1,1)在圓(x-a)2+(y-a)2=4的外部,是否存在正數(shù)a,使得p∨q為真命題;p∧q假命題,若存在,請(qǐng)求出a的范圍;若不存在,請(qǐng)說(shuō)明理由.

分析 根據(jù)條件求出命題的成立的等價(jià)條件,根據(jù)復(fù)合命題真假關(guān)系進(jìn)行判斷即可.

解答 解:若:?x≥1,x-$\frac{a}{x}$+2≥0,即x+2≥$\frac{a}{x}$,
即x2+2x≥a在x≥1時(shí)成立,
設(shè)f(x)=x2+2x,則f(x)=(x+1)2-1,
當(dāng)x≥1時(shí),函數(shù)f(x)為增函數(shù),則函數(shù)f(x)的最小值為f(1)=1+2=3,
則a≤3,即p:a≤3
若點(diǎn)P(1,1)在圓(x-a)2+(y-a)2=4的外部,
則(1-a)2+(1-a)2>4,
即(a-1)2>2,即a>1+$\sqrt{2}$或a<1-$\sqrt{2}$,
若存在正數(shù)a,使得p∨q為真命題;p∧q假命題,
則p,q為一真一假,
則此時(shí)p:0<a≤3,q:a>1+$\sqrt{2}$,
若p真q假,則$\left\{\begin{array}{l}{0<a≤3}\\{0<a≤1+\sqrt{2}}\end{array}\right.$,得0<a≤1+$\sqrt{2}$,
若p假q真,則$\left\{\begin{array}{l}{a>3}\\{a>1+\sqrt{2}}\end{array}\right.$,得a>3,
綜上0<a≤1+$\sqrt{2}$或a>3.

點(diǎn)評(píng) 本題主要考查復(fù)合命題真假的應(yīng)用,根據(jù)條件求出命題的等價(jià)條件是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.某學(xué)校高中畢業(yè)班有男生900人,女生600人,學(xué)校為了對(duì)高三學(xué)生數(shù)學(xué)學(xué)習(xí)情況進(jìn)行分析,從高三年級(jí)按照性別進(jìn)行分層抽樣,抽取200名學(xué)生成績(jī),統(tǒng)計(jì)數(shù)據(jù)如表所示:
分?jǐn)?shù)段(分)[50,70)[70,90)[90,110)[110,130)[130,150)總計(jì)
頻數(shù)2040705020200
(Ⅰ)若成績(jī)90分以上(含90分),則成績(jī)?yōu)榧案,?qǐng)估計(jì)該校畢業(yè)班平均成績(jī)及格學(xué)生人數(shù);
(Ⅱ)如果樣本數(shù)據(jù)中,有60名女生數(shù)學(xué)成績(jī)合格,請(qǐng)完成如下數(shù)學(xué)成績(jī)與性別的列聯(lián)表,并判斷是否有90%的把握認(rèn)為“該校學(xué)生的數(shù)學(xué)成績(jī)與性別有關(guān)”.
女生男生總計(jì)
及格人數(shù)60
不及格人數(shù)
總計(jì)
參考公式:K2=$\frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$.
 P(K2≥k0 0.10 0.050 0.010
 k0 2.706 3.841 6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,用一根長(zhǎng)為10m繩索圍成了一個(gè)圓心角小于x且半徑不超過(guò)3m的扇形場(chǎng)地,設(shè)扇形的半徑為xm,面積為Scm2
(1)寫(xiě)出S關(guān)于x的函數(shù)表達(dá)式,并求出該函數(shù)的定義域;
(2)當(dāng)半徑x和圓心角α分別是多少時(shí),所圍扇形場(chǎng)地的面積S最大,并求S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知直線l經(jīng)過(guò)直線2x+y-5=0與x-2y=0的交點(diǎn)P,直線l1的方程為4x-y+1=0.
(Ⅰ)若直線l平行于直線l1,求l的方程;
(Ⅱ)若直線l垂直于直線l1,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.過(guò)點(diǎn)A(-1,1)且與直線x+3y+4=0平行的直線l的方程為x+3y-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.有一種走“方格迷宮”游戲,游戲規(guī)則是每次水平或豎直走動(dòng)一個(gè)方格,走過(guò)的方格不能重復(fù),只要有一個(gè)方格不同即為不同走法.現(xiàn)有如圖的方格迷宮,圖中的實(shí)線不能穿過(guò),則從入口走到出口共有多少種不同走法?( 。
A.6B.8C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.log25,2-3,${3^{\frac{1}{2}}}$三個(gè)數(shù)中最小的數(shù)是2-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)fn(x)(n∈N*)具有下列性質(zhì):fn(0)=$\frac{1}{2}$;n[fn($\frac{k+1}{n}$)-fn($\frac{k}{n}$)]=[fn($\frac{k}{n}$)-1]fn($\frac{k+1}{n}$))(k=0,1,2,…,n-1).
(1)當(dāng)n一定時(shí),記ak=$\frac{1}{{f}_{n}(\frac{k}{n})}$,求ak的表達(dá)式(k=0,1,2,…,n-1);
(2)對(duì)n∈N*,證明$\frac{1}{4}$<fn(1)$≤\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=mlnx-x2+2(m∈R).
(Ⅰ)當(dāng)m=1時(shí),求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)在x=1時(shí)取得極大值,求證:f(x)-f′(x)≤4x-3;
(Ⅲ)若m≤8,當(dāng)x≥1時(shí),恒有f(x)-f′(x)≤4x-3恒成立,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案