【題目】【2018四川南充高三第二次(3月)高考適應(yīng)性考試】某校開展“翻轉(zhuǎn)合作學(xué)習(xí)法”教學(xué)試驗(yàn),經(jīng)過一年的實(shí)踐后,對(duì)“翻轉(zhuǎn)班”和“對(duì)照班”的全部220名學(xué)生的數(shù)學(xué)學(xué)習(xí)情況進(jìn)行測(cè)試,按照大于或等于120分為“成績(jī)優(yōu)秀”,120分以下為“成績(jī)一般”統(tǒng)計(jì),得到如下的
列聯(lián)表:
成績(jī)優(yōu)秀 | 成績(jī)一般 | 合計(jì) | |
對(duì)照班 | 20 | 90 | 110 |
翻轉(zhuǎn)班 | 40 | 70 | 110 |
合計(jì) | 60 | 160 | 220 |
(I)根據(jù)上面的列聯(lián)表判斷,能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為“成績(jī)優(yōu)秀與翻轉(zhuǎn)合作學(xué)習(xí)法”有關(guān);
(II)為了交流學(xué)習(xí)方法,從這次測(cè)試數(shù)學(xué)成績(jī)優(yōu)秀的學(xué)生中,用分層抽樣方法抽出6名學(xué)生,再?gòu)倪@6名學(xué)生中抽3名出來交流學(xué)習(xí)方法,求至少抽到1名“對(duì)照班”學(xué)生交流的概率.
附表:![]()
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(I)不能認(rèn)為“成績(jī)優(yōu)秀與翻轉(zhuǎn)合作學(xué)習(xí)法”有關(guān);(II)![]()
【解析】試題分析:(Ⅰ)根據(jù)公式,求得
的值,再根據(jù)附表,即可作出判斷,得到結(jié)論;
(Ⅱ)由分層抽樣可知:
在這 6 名學(xué)生中,設(shè)“對(duì)照班”的兩名學(xué)生分別為
,“翻轉(zhuǎn)班”的 4 名學(xué)生分別為
,列出基本事件的總數(shù),利用古典概型的概率計(jì)算公式,即可求得概率.
試題解析:
(1)![]()
所以,在犯錯(cuò)誤的概率不超過 0.001 的前提下,不能認(rèn)為“成績(jī)優(yōu)秀與翻轉(zhuǎn)合作學(xué)習(xí)法”有關(guān).
(2)設(shè)從“對(duì)照班”中抽取
人,從“翻轉(zhuǎn)班”中抽取
人,由分層抽樣可知:
在這 6 名學(xué)生中,設(shè)“對(duì)照班”的兩名學(xué)生分別為
,“翻轉(zhuǎn)班”的 4 名學(xué)生分別為
,則所有抽樣情況如下:
,
共 20 種.
其中至少有一名“對(duì)照班”學(xué)生的情況有 16 種,
記事件
為至少抽到 1 名“對(duì)照班”學(xué)生交流,則
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)查機(jī)構(gòu)隨機(jī)調(diào)查了
歲到
歲之間的
位網(wǎng)上購(gòu)物者的年齡分布情況,并將所得數(shù)據(jù)按照
,
,
,
,
分成
組,繪制成頻率分布直方圖(如圖).
(1)求頻率分布直方圖中實(shí)數(shù)
的值及這
位網(wǎng)上購(gòu)物者中年齡在
內(nèi)的人數(shù);
(2)現(xiàn)采用分層抽樣的方法從參與調(diào)查的
位網(wǎng)上購(gòu)物者中隨機(jī)抽取
人,再?gòu)倪@
人中任選
人,設(shè)這
人中年齡在
內(nèi)的人數(shù)為
,求
的分布列和數(shù)學(xué)期望.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱臺(tái)被過點(diǎn)
的平面截去一部分后得到如圖所示的幾何體,其下底面四邊形
是邊長(zhǎng)為2的菱形,
,
平面
,
.
(Ⅰ)求證:平面
平面
;
(Ⅱ)若
與底面
所成角的正切值為2,求二面角
的余弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
的焦點(diǎn)在拋物線
上,點(diǎn)
是拋物線
上的動(dòng)點(diǎn).
(1)求拋物線
的方程及其準(zhǔn)線方程;
(2)過點(diǎn)
作拋物線
的兩條切線,
、
分別為兩個(gè)切點(diǎn),求
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,圓
的參數(shù)方程為
,(t為參數(shù)),在以原點(diǎn)O為極點(diǎn),
軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線
的極坐標(biāo)方程為
,
兩點(diǎn)的極坐標(biāo)分別為.![]()
(1)求圓
的普通方程和直線
的直角坐標(biāo)方程;
(2)點(diǎn)
是圓
上任一點(diǎn),求
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,已知
,
,
底面
,且
,
,
為
的中點(diǎn),
在
上,且
.
![]()
(1)求證:平面
平面
;
(2)求證:
平面
;
(3)求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018湖南(長(zhǎng)郡中學(xué)、株洲市第二中學(xué))、江西(九江一中)等十四校高三第一次聯(lián)考】已知函數(shù)
(其中
且
為常數(shù),
為自然對(duì)數(shù)的底數(shù),
).
(Ⅰ)若函數(shù)
的極值點(diǎn)只有一個(gè),求實(shí)數(shù)
的取值范圍;
(Ⅱ)當(dāng)
時(shí),若
(其中
)恒成立,求
的最小值
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓
(
)的左、右焦點(diǎn)分別為
,
,過
作垂直于
軸的直線
與橢圓
在第一象限交于點(diǎn)
,若
,且
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)
,
是橢圓
上位于直線
兩側(cè)的兩點(diǎn).若直線
過點(diǎn)
,且
,求直線
的方程.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com